Data:
D = 250 mm
t = 5 mm
Force P = 80 KN
Pressure P = 90 KPa
$E = 200 Gpa = 200 \times 10^3 \ N/mm^2$
M = 0.25
Internal pressure = $90 \ Kpa = \frac{90 \times 1000}{1000^2} = 0.09 \ N/mm^2$
Longitudinal stress $\sigma l = \frac{P}{\pi \ d t} - \frac{Pd}{4t} = \frac{80 \times 10^3}{\pi \times 25
\times 5} - \frac{0.09 \times 250}{4 \times 5} $
= 19.247 $N/mm^2$ (Compressive)
Circumferential stress or Hoop stress $\sigma n = \frac{pd}{2t} = \frac{0.09 \times 250}{2 \times 5} = 2.25 \ N/mm^2 $
(tensile)
Longitudinal strain $\sigma l = \frac{1}{E} (El - \mu \ \sigma n) = \frac{1}{2 \times 10^5} [-19.247 –
2.25 \times 0.25]$ (Compressive in nature $\therefore$ using negative sign)
$El = -9.90475 \times 10^{-5}$
Circumferential strain = $En = \frac{1}{E} [ \sigma n - \mu \sigma l] = \frac{1}{2 \times 10^5} (2.25 –
(- 19.247 \times 0.25)]$
$= 3.53087 \times 10^{-5}$
Volumetric strain/strain of the capacity Ev:
$Ev = 2 \ En + El = 2 \times 3.53087 \times 10^{-5} – 9.9047 \times 10^{-5}$
=$ -2.843 \times 10^{-5}$
Volumetric strain of fluid =$ \frac{P}{K}$
$2.843 \times 10^{-5} = \frac{0.09}{K}$
$\therefore$ K = 3165.67 $N/mm^2$