Data: Cylindrical Shell:
L = 3m = 3000 mm
D = 1m = 1000 mm, $1/m = \mu = 0.3$
$ P = 1.5 \ Mpa = 1.5 \ N/mm^2$ $t = 15 \ mm, E = 2 \times 10^5 \ N/mm^2$
A] $\sigma n$
B] $\sigma l$
C] Maximum shear stress.
D] $\delta d$
E] $\delta l$
F] $\delta v$
A] Circumferential stress $\sigma n$
$\sigma n = \frac{Pd}{2 t} = \frac{1.5 \times 1000}{2 \times 15} = 50$
B] Longitudinal stress $\sigma l$
$\sigma l = \frac{Pd}{4 t} = \frac{\sigma n}{2} = \frac{50}{2} = 25 \ N/mm^2$
C] Maximum shear stress $q_{max}$.
$q_{max} = \frac{\sigma n - \sigma l}{2} = \frac{Pd}{8 t}$
$q_{max} = \frac{50 – 25}{2} = 3.125 \ N/mm^2$
D] Longitudinal strain =
$E l = \frac{\delta l}{L} = \frac{\sigma l - \mu \ \sigma n}{E}$
$\therefore \delta l = (\frac{\sigma l - \mu \ \sigma n}{E}) \ l$
$\therefore \delta l = (\frac{25 – 0.3 \times 50}{2 \times 10^5}) \times 3000$
$\delta l = 0.15 \ mm$ and $El = 5 \times 10^{-5}$
E] Hoop strain:
$E n = \frac{ \delta d}{d} = \frac{\sigma n - \mu \ \sigma l}{E}$
i.e. $\delta d = (\frac{ \sigma n - \mu \ \sigma l}{E}) \ d$
$\therefore$ $\delta d = (\frac{50 – 0.3 \times 25}{2 \times 10^5}) \times 1000$
$\delta d = 0.212 \ mm$ and $En = 2.125 \times 10^{-4}$
F] $Volumetric \ strain \ Ev = \frac{\delta v}{V} = 2 \ En + El$
i.e. $\delta v = (2 \times En + El) \frac{\pi}{4} \times d^2 \times l$
$\therefore \ \delta v = (2 \times 2.125 \times 10^{-4} + 5 \times 10^{-5}) \times \frac{\pi}
{4} \times 1000^2 \times 3000$ $(V = \frac{\pi}{4} \times d^2 \times l)$
$\delta V = 1.119 \times 10^6 \ mm^3$