Data:
A thin cylindrical shell.
L = 3.25 m = 3250 mm
D = 1m = 1000 mm
P = 1.2 Mpa = 1.2 $N/mm^2$
T = 10 mm
E = 200 $GN/m^2$
$E = 200 \times 10^3 \ N/mm^2$
$\mu = 0.3$
To Find:
1] Maximum shear stress.
2] $\sigma n$
3] $\sigma l$
4] $\delta l , \delta d , \delta v$
A] Longitudinal stress $\sigma l = \frac{Pd}{4 t} = \frac{1.2 \times 1000}{4 \times 10} =
30 \ N/mm^2$
B] Hoop stress $\sigma n = \frac{Pd}{2 t} = \frac{1.2 \times 1000}{2 \times 10} = 60 \
N/mm^2$
C] $Maximum \ shear \ stress = q_{max} = \frac{\sigma n - \sigma l}{2}$
i.e. $q_{max} = \frac{\frac{pd}{2t} - \frac{pd}{4t}}{2} = \frac{pd}{8t}$
$q_{max} = \frac{1.2 \times 1000}{8 \times 10} = 15 \ N/mm^2$
($q_{max} = \frac{pd}{8t}$)
OR
$q_{max} = \frac{60 – 30}{2} = 15 \ N/mm^2$
($q_{max} = \frac{\sigma n - \sigma l}{2}$)
D] Now, Longitudnal strain $El = \frac{\sigma l}{E} - \frac{\mu \ \sigma n}{E}$
$= \frac{1}{E} (\sigma l - \mu \ \sigma n) = \frac{1}{200 \times 10^3} \times (30 – 0.3 \times 60)$
$El = 6 \times 10^{-5}$
But $El = \frac{ \delta l}{l}$ i.e. $\delta l = E l \times l$
$\therefore \ \delta l = 6 \times 10^{-5} \times 3250 = 0.195 \ mm$
E] Hoop strain $En = \frac{\sigma n}{E} - \frac{ \mu \ \sigma l}{E} = \frac{1}{E} \ (\sigma
n - \mu \ \sigma l)$
$En = \frac{1}{2 \times 10^{-5}} \times (60 – 0.3 \times 30) = 2.55 \times 10^{-4}$
Now,
$En = \frac{\delta d}{d}$ i.e. $\delta d = E n \times d$
$\therefore \ \delta d = 2.55 \times 10^{-4} \times 1000 = 0.255 \ mm$
F] Volumetric strain $Ev = 2 \sigma n + \sigma l$
$= 2 \times 2.55 \times 10^{-4} + 6 \times 10^{-5}$
$Ev = 5.7 \times 10^{-4}$
Now, $Ev = \frac{\delta v}{v}$
i.e. $\delta v = Ev \times V = E_v \times \frac{\pi}{4} \ \times d^2 \times l$
$\therefore \ \delta V = 5.7 \times 10^{-4} \times \frac{\pi}{4} \times 1000^2 \times 3250$
$\delta V = 1.4549 \times 10^6 \ mm^3$