Data:
Dia. (d) = 1m = 1000 mm
Length (l) = 3m = 3000 mm
Thickness (t) = 10 mm
Internal pressure (p) = $3 N/mm^2$
$E = 2 \times 10^5 \ N/mm^2 $ & $\mu = 0.3$
A] $\delta d = ?$
B] $\delta l = ?$
C] $\delta v = ?$
For thin cylindrical shell,
$Hoop \ stress = \ \sigma_n = \frac{Pd}{2t} = \frac{3 \times 1000}{2 \times 10} = 150 \
N/mm^2$
$Longitudnal \ stress = \sigma_l = \frac{Pd}{1t} = \frac{\sigma n}{2} = \frac{150}{2} = 75 \
N/mm^2 $
Now, Hoop strain due to internal pressure:
$\epsilon n = \frac{\sigma n}{E} - \mu \frac{\sigma l}{E} = \frac{1}{E} (\sigma n - \mu \sigma l)$
$En = \frac{1}{2 \times 10^5} (150 – 0.3 \times 75) = 6.375 \times 10^{-4}$
Now, $E n = \frac{\delta d}{d} $ i.e. $\delta d = E n \times \ d$
A] $\therefore \ \delta d = 6.37 \times 10^{-4} \times 1000 = 0.637 \ mm$
Longitudinal strain due to internal pressure:
$El = \frac{\sigma L}{E} - \frac{ \mu \ \sigma n}{E} = \frac{1}{E} (\sigma l - \mu \ \sigma n)$
$El = \frac{1}{2 \times 10^5} (75 – 0.3 \times 150) = 1.5 \times 10^{-4}$
Now, $El = \frac{\delta l}{l} $
i.e. $\delta l = E l \times l$
B] $\therefore \ \delta l = 1.5 \times 10^{-4} \times 3000 = 0.45 \ mm$
Now, volumetric strain = 2 x hoop strain + Longitudinal strain.
$Ev = \frac{\delta v}{v} = 2 \times 6.375 \times 10^{-4} + 1.5 \times 10^{-4}$
$Ev = \frac{\delta v}{v} = 1.425 \times 10^{-3}$
i.e. $\delta v = 1.425 \times 10^{-3} \times V$
$= 1.425 \times 10^{-3} \times \frac{\pi}{4} \times d^2 \times l$
$= 1.425 \times 10^{-3} \times \frac{\pi}{4} \times 1000^2 \times 3000$
C] $\delta V = 3357577.1 \ mm^3$