From above figure, we get,
$P_1 = 100 \ Mpa$ (tensile)
$P_2 = 60 \ Mpa$ (tensile)
$\theta = 30°$
A] Normal stress on P – P Plane.
$\sigma_n = \frac{P_1 + P_2}{2} + (\frac{p_1 –p_2}{2}) \ cos \ 2 \ \theta $
$= \frac{100 + 60}{2} + (\frac{100 – 60}{2}) \ cos (2 \times 30)$
$\sigma_n = 91.75 \ Mpa$ (tensile).
B] Tangential stress on P – P Plane.
$\sigma_t = (\frac{p_1 – p_2}{2}) sin \ 2 \ \theta$
$= (\frac{100 – 60}{2}) \ sin (2 \times 30) $
$\sigma_t = 16.18 \ Mpa$
C] Resultant stress and its direction.
$\sigma_R = \sqrt{\sigma n^2 + \sigma t^2} = 93.27 \ Mpa$
$\phi = tan^{-1} (\frac{\sigma t}{\sigma n}) = 11.11°$