written 6.0 years ago by | modified 5.0 years ago by |
Fig. shows an element in a stressed body. Determine normal, tangential and resultant stresses on a plane Q-Q inclined as shown. Either use analytical method or graphical method
written 6.0 years ago by | modified 5.0 years ago by |
Fig. shows an element in a stressed body. Determine normal, tangential and resultant stresses on a plane Q-Q inclined as shown. Either use analytical method or graphical method
written 5.1 years ago by |
Data:
$P_1 = 140 \ Mpa$ (tensile)
$P_2 = 80 \ Mpa$ (tensile)
$\theta = 30°$ with the maximum principal plane.
A] Normal stress $\sigma_n / Pn$ :
$\sigma_n = \frac{P_1 + P_2}{2} + [\frac{P_1 – P_2}{2}] \ cos \ 2 \ \theta$
$= \frac{140 + 80}{2} + (\frac{140 – 80}{2}) \ cos \ 2 \times 30°$
= 110 + 30 cos 60
$\sigma_n = 125 \ Mpa$
B] Tangential stress $\sigma_t/Pt$
$\sigma_t = [\frac{P_1 – P_2}{2}] \ sin \ 2 \theta = (\frac{140 – 80}{2}) \ sin \ 2 \times 30$
$\sigma_t = 25.98 \ Mpa$
C] Resultant stress $\sigma_R / Re$
$\sigma_R = \sqrt{\sigma n^2 + \sigma t^2} = \sqrt{ 125^2 + 25.98^2}$
$\sigma_R = 127.67 \ Mpa$
And its direction or inclination is,
$\phi = tan^{-1} (\frac{\sigma t}{\sigma_n})$
$\phi = tan^{-1} (\frac{25.98}{125}) = 13.04°$