written 5.1 years ago by
teamques10
★ 68k
|
•
modified 5.0 years ago
|
Data:
(L) Length = 12 m
Both ends are fixed. i.e. $Le = \frac{1}{2} \ L$
Axial Load = 17 KN
$E = 2 \times 10^5 \ Mpa$
1] Moment of Inertia:
$I_{xx} = \frac{100 \times 160^3}{12} - \frac{(100- 15) \times 130^3}{12} = 18.57 \times
10^6 \ mm^4 $
$I_{yy} = 2 \times \frac{15 \times 100^3}{12} + \frac{130 \times 15^3}{12} = 2.50 \times
10^6 \ mm^4$
$Lesser \ moment \ of \ Inertia = I = I_{yy} = 2.50 \times 10^6 \ mm^4$
2] (P) Crippling load by Euler’s formula:
$P = \frac{\pi^2 \ E \ I}{L^2e}$
$Le = \frac{1}{2} \ \times L = \frac{1}{2} \times 12000 = 6000 \ mm$ (Both ends are
fixed).
$\therefore$ $P = \frac{\pi^2 \times 2 \times 10^5 \times 2.50 \times 10^6}{6000^2} =
137.07 \times 10^3 \ N $
i.e. P = 137.07 KN.
$Safe \ load = \frac{Crippling \ Load}{F.O.S}$
$\therefore$ $\ F.O.S = \frac{Crippling \ load}{Safe \ load} = \frac{137.07}{17} = 8.06 $
$\therefore$ Factor of safety is 8.06.