Data: Both ends hinged.
L = 6m = 600mm. i.e. Le = L
Do = 120 mm, di = 80 mm.
E = 80,000 Mpa.
Crushing strength Fe = 550 Mpa.
Rankine’s constant = $\frac{1}{1600}$
a] P by Euler's formula.
b] P by Rankine's formula.
c] {L} Length of column when both crippling loads are equal.
[1] Area, moment of Inertia, Radius of Gyration (k) :
$A= \frac{\pi}{4} \times (120^2 - 80^2) = 6283.18 \ mm^2$
$I = \frac{\pi}{64} \times (120^4 - 80^4) = \ 8.168 \times 10^6 \ mm^4$
$K^2 = \frac{I}{A} = \frac{8.168 \times 10^6}{6283.18}$
$\therefore \ k^2 = 1300$
[A] [P] Crippling load by Euler’s Formula:
$P_e = \frac{\pi^2 \ E \ I}{L^2e} = \frac{\pi^2 \times 80 \times 10^3 \times 8.168 \times 10^6}{6000^2}$
$P_e = 179.144 \times 10^3 \ N$
[B] P crippling load by Rankine’s FORMULA:
$P_r = \frac{f6 \times A}{1 + \alpha (\frac{Le}{k})^2} = \frac{550 \times 6283.18}{1 +
\frac{1}{1600} \times (\frac{6000^2}{1300})}$
$P_r = 188.76 \times 10^3 \ N$
[C] Length of column when both crippling loads are equal.
$\therefore \ P_e = P_r$
$\therefore$ $\frac{\pi^2 \ E \ I}{L^2e} = \frac{fc \times A}{1 + \alpha (\frac{Le^2}{k^2})}$
$\therefore$ $\frac{\pi^2 \times 80 \times 10^3 \times 8.168 \times 10^6}{L^2e} =
\frac{550 \times 6283.18}{1 + \frac{1}{1600} \times (\frac{Le}{1300})}$
i.e. $\frac{L^2e}{1 + \frac{L^2e}{(1600\times 1300)}} = \frac{\pi^2 \times 80 \times 10^3
\times 8.168 \times 10^6}{550 \times 6283.18} = 18.66 \times 10^6$
i.e. $L^2e = 18.66 \times 10^6 + \frac{18.66 \times 10^6}{1600 \times 1300} \times
L^2e$
i.e. $L^2e = 18.66 \times 10^6 + 8.97 \ L^2e $
i.e. $7.97 \ L2^e = 18.66 \times 10^6$
i.e. $Le^2 = 2.34 \times 10^6$
$\therefore$ $Le = \pm \ 1529.70$
$i.e. Le = 1529.70 \ mm$
Now, Both ends of column are hinged,
$\therefore$ Le = L
$\therefore$ Length of column L is 1529.70 mm.