Data: L = 5.5 m = 5500 mm.
External dia. (do) = 80 mm
Thickness t = 10 mm
Both ends of the column are fixed.
$Es = 2 \times 10^5 \ N/mm^2$
Fc = 350 Mpa
Rankine constant $\alpha$ = 1/7500
To Find:
[1] Euler’s crippling load.
[2] Rankine’s crippling load.
1] Internal diameter (di) :
$t = \frac{do – di}{2} $
i.e. $di = do - 2t = 80 - 2 \times 10 = 60 \ mm$
$Moment \ of \ Inertia = I = \frac{\pi}{64} (do^4 – di^4) = 1.374 \times 10^6 \ mm^4$
2] Effective length of column:
Both ends of column are fixed.
$\therefore$ $Le = \frac{1}{2} \times L = \frac{5500}{2} = 2750 \ mm$
A] Crippling load by Euler’s formula:
$\therefore$ $P = \frac{\pi^2 \ E \ I}{L^2e} = \frac{\pi^2 \times 2 \times 10^5 \times 1.374
\times 10^6}{2750^2} = 358.63 \ KN$
$(\because 1KN = 10^3 \ N)$
B] Crippling load by Rankine’s formula.
$P = \frac{fc \times A}{1 + (\frac{fc}{\pi^2 \ E}) \times (\frac{Le}{k})^2} = \frac{f_c \ A}{1 +
\alpha (\frac{Le}{k})^2}$
$Fc \times A \rightarrow \ Crushing \ Load.$
$\frac{Fc}{\pi^2 \ E} \rightarrow \ \alpha \ (Rankine’s \ Constant).$
$K^2 = \frac{I}{A} = \frac{1.374 \times 10^6}{\frac{\pi}{4} \times \ (do^2 – di^2)} = 624.79 \
(i.e. K = \sqrt{624.79}$
$\therefore$ $P = \frac{350 \times \frac{\pi}{4} \times (do^2 – di^2)}{1 + \frac{1}{7500}
\times (\frac{2750}{\sqrt{624.79}})^2}$
$= \frac{350 \times \frac{\pi}{4} \times (80^2 – 60^2)}{1 + \frac{1}{7500} \times \frac{2750^2}
{624.79}} = \frac{769690.2}{2.613}$
$P = 294.56 \times 10^3 \ N$