written 6.1 years ago by | • modified 5.0 years ago |
- Calculate max capacity of this channel.
- Assuming constant transmitting power, calculate max. capacity when channel b.w is 1 halved 2, reduced to quarter of its original value.
written 6.1 years ago by | • modified 5.0 years ago |
written 6.1 years ago by |
B= 2 kHz and (S/N) = 24dB
$∴24=10 \log_10 \big(\frac{S}{N}\big) \\ ∴\frac{S}{N}=251$
Channel capacity:
$C= B \log_2 \big[1+\frac{S}{N}\big] \\ =2 \times 10^3 \log_2[1+251] \\ C = 15.95 \times 10^3 bits/sec$
B is halved:
$∴ b.w, B_2=1kHz, old b.w., B_1=2 kHz \\ ∴N=N_o B,∴N_1=N_o B_1 \\ ∴N_2=N_o B_2 \\ ∴\frac{N_2}{N_1} =\frac{N_o B_2}{N_o B_1 }=\frac{B_2}{B_1} =\frac{1}{2} \\ ∴\frac{N_2}{N_1} =\frac{1}{2}$
As signal power remain constant,
SNR with new b.w. is,
$\frac{S}{N^2} =\frac{S}{N_1/2}=2 \frac{S}{N_1}$
But, $\frac{S}{N_1} =251 \\ ∴\frac{S}{N_2} =2 \times 251=502 \\ ∴C=B_2 \log_2[i+S/N_2] \\ =2 \times 10^3 \log_{10}(503)/ \log_{10} 2 \\ =17.94 \times 1^3 bits/sec$
¼ of original value:
$\frac{N_2}{N_1} =\frac{1}{4} \\ ∴\frac{S}{N_3} =4 \frac{S}{N_1} =4 \times 251=1004 \\ ∴C=B_3 \log_2(1+ \frac{S}{N_3} )=500 \log_2(1004) \\ C=4.99 \times10^3 bits/sec.$