Inverting Adder/ Summing Amplifier:
$V_1,V_2,V_3→ 3 i/p$ signals simultaneously applied to inverting terminal of op-amp through $R_1,R_2$ and $R_3$
Voltages are measured w.r.t. grid. $R_f$ is feedback resistor connected between the o/p terminal and inverting i/p terminal of op-amp. The non – inverting i/p terminal →
KCL at node A.
$I_1+I_2+I_3=I_B2+I_f$
But $R_i$ of op-amp ideally $'∞',I_B2= 0$
$V_A=V_B=0$ due to virtual grid concept.
Hence, $I_1+I_2+I_3=I_f$
⇒ On i/p side, $I_1=\frac{V_1-V_A}{R_1} =\frac{V_1}{R_1}$ as $V_A=0$
Similarly, $I_2=\frac{V_2}{R_2} ,I_3=\frac{V_3}{R_3}$
⇒ On o/p side
$I_f=\frac{V_A-V_0}{R_f} =-\frac{V_0}{R_f}$
Substituting:-
$\frac{V_1}{R_1}+\frac{V_2}{R_2}+\frac{V_3}{R_3}=-\frac{V_0}{R_f}$
OR
$V_0=-\big[\frac{R_f}{R_1}V_1+\frac{R_f}{R_2}V_2+ \frac{R_f}{R_3}V_3 \big]$
If we substitute $R_f=R_1=R_2=R_3=R$ , then
$V_0= -(V_1+V_2+V_3)$
Averaging circuit:
The inverting adder circuit, can be used as an averaging circuit by setting $R_1=R_2=R_3=R$ and $R_f=R/3$
$∴V_0=\frac{-RF}{R} (V_1+V_2+V_3 )=\frac{-R/3}{R} (V_1+V_2+V_3 ) \\
∴V_0=\frac{-(V_1+V_2+V_3 )}{3}$
Thus magnitude of o/p voltage is equal to the avg of 3 i/p voltages. This principle can be extended for n nos of i/ps by setting.
$R_f=\frac{R}{n}$ and $R_1=R_2…….=R_n=R$
Then o/p $V_0=\frac{-(V+V_2+V_3+⋯…..+V_n )}{n}$