For composite bar
$\theta = \theta_B = \theta_S\\
T = T_B + T_S$
$\theta = 7.2^\circ = 0.1256\hspace{0.05cm}rad\\
\theta_B = \theta_S = 0.1256\\
T = 520\hspace{0.05cm}Nm = 520\hspace{0.05cm}\times\hspace{0.05cm}10^3\hspace{0.05cm}Nmm\\
J = \frac{\pi}{32}[D^4 - d^4]\\
\hspace{0.25cm} = \frac{\pi}{32}[32^4 - 19^4]\\
J = 90.14\hspace{0.05cm}\times\hspace{0.05cm}10^3\hspace{0.05cm}mm^4\\
R = \frac{D}{2} = 16\hspace{0.05cm}mm$
$\frac{T}{J} = \frac{G\theta}{L}\\
T = \frac{GJ\theta}{L}\\
\textit{But}\hspace{0.5cm}T = T_B + T_S\\
520\hspace{0.05cm}\times\hspace{0.05cm}10^3 = (\frac{GJ\theta}{L})_B + (\frac{GJ\theta}{L})_S\\
G_B = 45.849 \hspace{0.05cm}\times\hspace{0.05cm}10^3\hspace{0.05cm}N/mm^2$
For Brass,
$\frac{\tau_B}{R_B} = \frac{G\theta_B}{L_B}\\
\tau_B = 92.13\hspace{0.05cm}N/mm^2$
For Steel,
$\frac{\tau_S}{R_S} = \frac{G\theta_S}{L_S}\\
\tau_S = 0.09\hspace{0.05cm}N/mm^2$