$\theta = \theta_{AC} = \theta_{CB}\\
T = T_{AC} + T_{CB}\\
J = \frac{\pi}{32} D^4 = \frac{\pi}{32}\hspace{0.05cm}\times\hspace{0.05cm}40^4 = 251.32\hspace{0.05cm}\times\hspace{0.05cm}10^3$
$\frac{T}{J} = \frac{G\theta}{L}\\
\theta = \frac{TL}{JG}\\
\textit{Torque} (T) = T_{AC} + T_{CB}\\
1000 = T_{AC} + T_{CB}....(1)\\
\textit{Twist} \theta_{AC} = \theta_{CB}\\
[\frac{TL}{GJ}]_{AC} = [\frac{TL}{GJ}]_{CB}\\
T_{AC} = \frac{5}{3}T_{CB}\\
T_{AC} = 1.67 T_{CB}$
From equation (1), $1000 = T_{AC} + T_{BC}\\
1000 = 1.67 T_{CB} + T_{CB}\\
T_{CB} = 374.5\hspace{0.05cm}Nm\\
T_{AC} = 625.47\hspace{0.05cm}Nm$
CASE II
$\theta_c = \frac{T_{AC} L_{AC}}{GJ}\\
\hspace{0.25cm} = \frac{625.46\hspace{0.05cm}\times\hspace{0.05cm}10^3\hspace{0.05cm}\times\hspace{0.05cm}3000}{0.84\hspace{0.05cm}\times\hspace{0.05cm}10^5\hspace{0.05cm}\times\hspace{0.05cm}251.32\hspace{0.05cm}\times\hspace{0.05cm}10^3}\\
\hspace{0.25cm} = 8.88\hspace{0.05cm}\times\hspace{0.05cm}10^{-2}\hspace{0.05cm}rad = 5.08^\circ$
$\frac{T_{AC}}{J} = \frac{\tau}{R}\\
\frac{625.46\hspace{0.05cm}\times\hspace{0.05cm}10^3}{251.32\hspace{0.05cm}\times\hspace{0.05cm}10^3} = \frac{\tau}{20}\\
\tau = 49.77\hspace{0.05cm}N/mm^2$
$\frac{T_{CB}}{J} = \frac{\tau}{R}\\
\frac{374.5\hspace{0.05cm}\times\hspace{0.05cm}10^3}{251.32\hspace{0.05cm}\times\hspace{0.05cm}10^3} = \frac{\tau}{20}\\
\tau = 29.80\hspace{0.05cm}N/mm^2$
$\textit{Maximum shear stress} \tau_{max} = 49.77\hspace{0.05cm}N/mm^2$