0
1.6kviews
A solid shaft ACB is of circular cross section, 8 m long is securely fixed at each end. A torque of 1000 N-m is applied to the end of shaft C, 3m from the end A.

Find the relative torque setup at the ends A and B of the shaft. If the diameter of the shaft is 40 mm. Find the maximum shear stress analysis in the shaft and angle of twist at the point where the torque is applied. Assume shear modulus for the shaft as $0.84 x 10^5$ Mpa.

1 Answer
0
54views

enter image description here

$\theta = \theta_{AC} = \theta_{CB}\\ T = T_{AC} + T_{CB}\\ J = \frac{\pi}{32} D^4 = \frac{\pi}{32}\hspace{0.05cm}\times\hspace{0.05cm}40^4 = 251.32\hspace{0.05cm}\times\hspace{0.05cm}10^3$

$\frac{T}{J} = \frac{G\theta}{L}\\ \theta = \frac{TL}{JG}\\ \textit{Torque} (T) = T_{AC} + T_{CB}\\ 1000 = T_{AC} + T_{CB}....(1)\\ \textit{Twist} \theta_{AC} = \theta_{CB}\\ [\frac{TL}{GJ}]_{AC} = [\frac{TL}{GJ}]_{CB}\\ T_{AC} = \frac{5}{3}T_{CB}\\ T_{AC} = 1.67 T_{CB}$

From equation (1), $1000 = T_{AC} + T_{BC}\\ 1000 = 1.67 T_{CB} + T_{CB}\\ T_{CB} = 374.5\hspace{0.05cm}Nm\\ T_{AC} = 625.47\hspace{0.05cm}Nm$

CASE II

$\theta_c = \frac{T_{AC} L_{AC}}{GJ}\\ \hspace{0.25cm} = \frac{625.46\hspace{0.05cm}\times\hspace{0.05cm}10^3\hspace{0.05cm}\times\hspace{0.05cm}3000}{0.84\hspace{0.05cm}\times\hspace{0.05cm}10^5\hspace{0.05cm}\times\hspace{0.05cm}251.32\hspace{0.05cm}\times\hspace{0.05cm}10^3}\\ \hspace{0.25cm} = 8.88\hspace{0.05cm}\times\hspace{0.05cm}10^{-2}\hspace{0.05cm}rad = 5.08^\circ$

$\frac{T_{AC}}{J} = \frac{\tau}{R}\\ \frac{625.46\hspace{0.05cm}\times\hspace{0.05cm}10^3}{251.32\hspace{0.05cm}\times\hspace{0.05cm}10^3} = \frac{\tau}{20}\\ \tau = 49.77\hspace{0.05cm}N/mm^2$

$\frac{T_{CB}}{J} = \frac{\tau}{R}\\ \frac{374.5\hspace{0.05cm}\times\hspace{0.05cm}10^3}{251.32\hspace{0.05cm}\times\hspace{0.05cm}10^3} = \frac{\tau}{20}\\ \tau = 29.80\hspace{0.05cm}N/mm^2$

$\textit{Maximum shear stress} \tau_{max} = 49.77\hspace{0.05cm}N/mm^2$

Please log in to add an answer.