0
1.8kviews
A hollow steel shaft is running at 180 rpm and transmit 1600 KW power. Determine the shear stresses at outer and inner radius of the shaft.

If the internal and external diameter of the shafts are 125mm and 200mm respectively. Take $G= 84 x 10^3$ Mpa.

1 Answer
1
122views

Given

$N = 180\hspace{0.05cm}rpm\\ P = 1600\hspace{0.05cm}KW = 1600\hspace{0.05cm}\times\hspace{0.05cm}10^3\hspace{0.05cm}W\\ d = 125\hspace{0.05cm}mm,\hspace{0.5cm}r = 62.5\hspace{0.05cm}mm\\ D = 200\hspace{0.05cm}mm\hspace{0.5cm}R = 100\hspace{0.05cm}mm$

Solution

$P = \frac{2\pi NT}{60}\\ 1600\hspace{0.05cm}\times\hspace{0.05cm}10^3 = \frac{2\pi 180T}{60}\\ T = 84880\hspace{0.05cm}Nm = 84880\hspace{0.05cm}\times\hspace{0.05cm}10^3\hspace{0.05cm}Nmm$

Shear stress at outer radius (R = 100 mm)

$\frac{T}{J} = \frac{\tau}{R}\\ J = \frac{\pi}{32}[D^4 - d^4].....Hollow\\ \hspace{0.25cm} = \frac{\pi}{32}[200^4 - 125^4] = 133.11\hspace{0.05cm}\times\hspace{0.05cm}10^6\hspace{0.05cm}mm^4\\ \tau_{100} = \frac{TR}{J}\\ \hspace{0.25cm} = \frac{84880\hspace{0.05cm}\times\hspace{0.05cm}10^3\hspace{0.05cm}\times\hspace{0.05cm}100}{133.11\hspace{0.05cm}\times\hspace{0.05cm}10^6}\\ \tau_{100} = 63.76\hspace{0.05cm}N/mm^2$

$\tau$ at inner radius

$\tau_{62.5} = \frac{T.r}{J}\\ \tau_{62.5} = 39.85\hspace{0.05cm}N/mm^2$

Please log in to add an answer.