$J_p ] = \frac{\pi}{32} \times 60^4 = 1.272 \times 10^6 \ mm^4$
$J_p ]_c = \frac{\pi}{32} [ 75^2 – 45^2] = 2.704 \times 10^6 \ mm^4$
ET = 0
$T_A + T_c = 2000$ - [1]
$\theta_s ]_B = \theta_c ]_B$
$\frac{TA \ \times 1200}{80 \times 10^3 \times 1.272 \times 10^6} = \frac{Tc \times 1200}{40 \times 10^3 \times 2.704 \times 10^6}$
$T_A = 0.941 \ Tc$ - [2]
Solving 1 and 2
$T_A = 969.5 \ Nm$
$T_c = 1030.5 \ Nm$
$\theta_3 = \frac{969.5 \times 10^3 \times 1200}{80 \times 10^3 \times 1.272 \times 10^6} = 0.0114$ rad $\hookleftarrow$
$\zeta_s = \frac{969.5 \times 5 \times 10^3 \times 30}{1.272 \times 10^6} = 22.866 \ N/mm^2$
$\zeta_c = \frac{1030.5 \times 10^3 \times 37.5}{2.704 \times 10^6} = 14.29 \ Nmm^2$
Stress distribution diagram