Data: Diameter of shaft (d) = ?
Angle of twist ($\theta)$ = 0.5°
Shear stress ($\zeta)$ = 40 Mpa
Force (F) = 25N
Modulus of Rigidity (G) = $ 37 Gpa = 37 \times 10^3 N/mm^2$
$\rightarrow$ $Torque = Force \times distance = f \times d^1 $
$= 25 \times 150$
(T) = 3750 N mm
L is the length of shaft.
1] For Strength:
$\frac{T}{J_p} = \frac{\zeta}{r}$
$\therefore$ $\frac{3750}{\frac{\pi}{32} \times d^4} = \frac{40}{(\frac{d}{2})}$
$\therefore$ d = 7.81 mm
2] For stiffness:
$\frac{T}{J_p} = \frac{G \ \theta}{L}$
$\therefore$ $\frac{3750}{\frac{\pi}{32} \times d^4} = \frac{37 \times 10^3}{150} \times (0.5 \times \frac{\pi}{180})$
$\therefore$ d = 11.54 mm.
Value of d is greater of above two values i.e. d = 11.54 mm.