written 6.0 years ago by
teamques10
★ 68k
|
•
modified 6.0 years ago
|
$Data: Power P= 1M \hspace{1mm}W $
$N= 220 \hspace{1mm} RPM (revolution \hspace{1mm} per \hspace{1mm} minute) $
$\theta = 1 ^ \circ (angle \hspace{1mm} of \hspace{1mm} twist)$
$Length (l) \hspace{1mm} 12\hspace{1mm} times \hspace{1mm} the \hspace{1mm} shaft$ $diameter (d) $
$i.e l=12d$
$Shear \hspace{1mm} stress \hspace{1mm} \tau=60N/mm^2$
$G=84 KN/mm^2$
$G=84*10^3 N/mm^2 (modulus \hspace{1mm} of \hspace{1mm} rigidity)$
- Power transmitted by shaft is,
$P= \frac{2 \pi NT}{60}$
$1*10^6=\frac{2 \pi *220*T}{60}$
$T=43405.89 Nm = 43405.89*10^3 Nmm$
- For strength:
$\frac{T}{J_p}=\frac{\tau}{r}$
$\frac{43405.89*10^3}{\frac{\pi d^4}{32}} = \frac{60}{\frac{d}{2}}$
- For stiffness:
$\frac{T}{J_p}=\frac{G\theta}{l}$
$\frac{43405.89*10^3}{\frac{\pi d^4}{32}} = \frac{84*10^3*(1*\frac{\pi}{180})}{12d}$
$d=153.52mm$
Safe diameter=greater of two values
=154.45mm
Note:
The angle twist (θ) always in radian.
N in RPM.
Torque (T) in Power formula always be in Nm.