0
5.3kviews
Find Eulers crippling load for the hollow cylinder cast iron column of 150mm internal diameter and 25 mm thick. If it is 6m long and hinged at both ends.

Take $E= 8x10^4$ MPa. Compare Euler critical load by taking $\sigma_c$= 550 MPa and $\alpha^{'}$ = (1/1600). For what length of the column the critical load by the Euler’s and Rankine formula will be equal to each other.

1 Answer
1
837views

enter image description here

Since both ends are hinged, $L_c = L = 6\hspace{0.05cm}m$

$A = \frac{\pi}{4}(D^2 - d^2) = 13744\hspace{0.05cm}mm^2 = 13.74\hspace{0.05cm}\times\hspace{0.05cm}10^3\hspace{0.05cm}mm^2\\ L = 6\hspace{0.05cm}m = 6000\hspace{0.05cm}mm\\ E = 8\hspace{0.05cm}\times\hspace{0.05cm}10^4\\ \alpha = \frac{1}{1600}$

$I_{xx} = I_{yy} = \frac{\pi}{64}(D^4 - d^4)\\ \hspace{0.5cm} = 53.68\hspace{0.05cm}\times\hspace{0.05cm}10^3\hspace{0.05cm}mm^4\\ K = \sqrt{\frac{I_{min}}{A}} = \sqrt{\frac{53.68\hspace{0.05cm}\times\hspace{0.05cm}10^3}{13744}}\\ \hspace{0.05cm} = 62.50$

$P_{Euler} = \frac{\pi^2}{L_c^2}EI\\ \hspace{0.25cm} = \frac{\pi^2}{(6\hspace{0.05cm}\times\hspace{0.05cm}10^3)^2}\hspace{0.05cm}\times\hspace{0.05cm}8\hspace{0.05cm}\times\hspace{0.05cm}10^4\hspace{0.05cm}\times\hspace{0.05cm}53.68\hspace{0.05cm}\times\hspace{0.05cm}10^6\\ \hspace{0.25cm} = 1177334.14\hspace{0.05cm}N = 1.17\hspace{0.05cm}\times\hspace{0.05cm}10^3\hspace{0.05cm}KN$

$P_{Rankine} = \frac{\sigma_{cr}\hspace{0.05cm}\times\hspace{0.05cm}A}{1 + \alpha (\frac{L_c}{K})^2}\\ \hspace{0.25cm} = \frac{550\hspace{0.05cm}\times\hspace{0.05cm}13744}{1 + \frac{1}{1600}(\frac{6\hspace{0.05cm}\times\hspace{0.05cm}10^3}{62.50})^2}\\ \hspace{0.25cm} = 1.11\hspace{0.05cm}\times\hspace{0.05cm}10^3\hspace{0.05cm}KN$

For the same length, $P_{Euler} = P_{Rankine}\\ \frac{\pi^2}{L_c^2}EI = \frac{\sigma_c . A}{1 + \alpha (\frac{L_c^2}{62\hspace{0.05cm}\times\hspace{0.05cm}50^2})}\\ \frac{4.239\hspace{0.05cm}\times\hspace{0.05cm}10^13}{L_c^2} = 7557000\\ L_c = 2368.41\hspace{0.05cm}mm$

Please log in to add an answer.