written 6.1 years ago by
teamques10
★ 68k
|
•
modified 5.1 years ago
|
Since both ends are hinged, $L_c = L = 6\hspace{0.05cm}m$
$A = \frac{\pi}{4}(D^2 - d^2) = 13744\hspace{0.05cm}mm^2 = 13.74\hspace{0.05cm}\times\hspace{0.05cm}10^3\hspace{0.05cm}mm^2\\
L = 6\hspace{0.05cm}m = 6000\hspace{0.05cm}mm\\
E = 8\hspace{0.05cm}\times\hspace{0.05cm}10^4\\
\alpha = \frac{1}{1600}$
$I_{xx} = I_{yy} = \frac{\pi}{64}(D^4 - d^4)\\
\hspace{0.5cm} = 53.68\hspace{0.05cm}\times\hspace{0.05cm}10^3\hspace{0.05cm}mm^4\\
K = \sqrt{\frac{I_{min}}{A}} = \sqrt{\frac{53.68\hspace{0.05cm}\times\hspace{0.05cm}10^3}{13744}}\\
\hspace{0.05cm} = 62.50$
$P_{Euler} = \frac{\pi^2}{L_c^2}EI\\
\hspace{0.25cm} = \frac{\pi^2}{(6\hspace{0.05cm}\times\hspace{0.05cm}10^3)^2}\hspace{0.05cm}\times\hspace{0.05cm}8\hspace{0.05cm}\times\hspace{0.05cm}10^4\hspace{0.05cm}\times\hspace{0.05cm}53.68\hspace{0.05cm}\times\hspace{0.05cm}10^6\\
\hspace{0.25cm} = 1177334.14\hspace{0.05cm}N = 1.17\hspace{0.05cm}\times\hspace{0.05cm}10^3\hspace{0.05cm}KN$
$P_{Rankine} = \frac{\sigma_{cr}\hspace{0.05cm}\times\hspace{0.05cm}A}{1 + \alpha (\frac{L_c}{K})^2}\\
\hspace{0.25cm} = \frac{550\hspace{0.05cm}\times\hspace{0.05cm}13744}{1 + \frac{1}{1600}(\frac{6\hspace{0.05cm}\times\hspace{0.05cm}10^3}{62.50})^2}\\
\hspace{0.25cm} = 1.11\hspace{0.05cm}\times\hspace{0.05cm}10^3\hspace{0.05cm}KN$
For the same length, $P_{Euler} = P_{Rankine}\\
\frac{\pi^2}{L_c^2}EI = \frac{\sigma_c . A}{1 + \alpha (\frac{L_c^2}{62\hspace{0.05cm}\times\hspace{0.05cm}50^2})}\\
\frac{4.239\hspace{0.05cm}\times\hspace{0.05cm}10^13}{L_c^2} = 7557000\\
L_c = 2368.41\hspace{0.05cm}mm$