0
890views
Find Eulers crippling load for hollow cylinder column of 50mm external diameter and 5mm thick. Both ends of the column are hinged and length of the column is 2.5m.

Take $E= 2x 10^5$ MPa. Also determine the Rankine crippling load for the same column. Take $\sigma_c= 350 $ MPa and $\alpha^{'}$= (1/7500)

1 Answer
0
11views

enter image description here

$l = 2500\hspace{0.05cm}mm\\ A = \frac{\pi}{4}(D^2 - d^2) = 706.86\hspace{0.05cm}mm^2\\$ $I_{xx} = I_{yy} = \frac{\pi}{64}(D^4 - d^4) = 28.98\hspace{0.05cm}\times\hspace{0.05cm}10^5\hspace{0.05cm}mm^4\ K = \sqrt{\frac{I_{min}}{A}} = 16\hspace{0.05cm}mm\ \sigma_c = 350\hspace{0.05cm}N/mm^2\ \alpha = \frac{1}{7500}\ I = AK^2 = 706.86\hspace{0.05cm}\times\hspace{0.05cm}16^2 = 181\hspace{0.05cm}\times\hspace{0.05cm}10^3\hspace{0.05cm}mm^4$ Both ends are hinged, therefore; $L_c = L = 2500\hspace{0.05cm}mm$ $P_{Euler} = \frac{\pi ^2}{L_c^2}EI = \frac{\pi^2}{2500^2}\hspace{0.05cm}\times\hspace{0.05cm}2\hspace{0.05cm}\times\hspace{0.05cm}10^5\hspace{0.05cm}\times\hspace{0.05cm}181\hspace{0.05cm}\times10^3\ \hspace{0.25cm} = 57.20\hspace{0.05cm}\times\hspace{0.05cm}10^3\hspace{0.05cm}N = 57.2\hspace{0.05cm}KN$ $P_{Rankine} = \frac{\sigma_{cr}\hspace{0.05cm}\times\hspace{0.05cm}A}{1 + \alpha(\frac{L_c}{K})^2}\ \hspace{0.25cm} = \frac{350\hspace{0.05cm}\times\hspace{0.05cm}76.86}{1 + 7500(\frac{2500}{16})^2}\ \hspace{0.25cm} = 58.37\hspace{0.05cm}KN$

Please log in to add an answer.