0
7.4kviews
A hollow column has outside dia 200mm, it is 4.5m long and is fixed at both ends. Determine the safe load the column can carry. Use Rankine formula.

Take metal thickness as 20mm and $\sigma_{cr}$ = 550 MPa., $(1/\alpha^{'})$= 1600

1 Answer
0
1.4kviews

enter image description here

$\frac{1}{\alpha} = 1600\\ \alpha = \frac{1}{1600}$

$E = 94\hspace{0.05cm}GPa = 94\hspace{0.05cm}\times\hspace{0.05cm}10^3\hspace{0.05cm}MPa\hspace{0.05cm}(or)\hspace{0.05cm}N/mm^2\\ FOS = 4 L = 4.5\hspace{0.05cm}m = 4500\hspace{0.05cm}mm\\ A = \frac{\pi}{4}(D^2 - d^2) = 11.30\hspace{0.05cm}\times\hspace{0.05cm}10^3\hspace{0.05cm}mm^2$

$I_{xx} = I_{yy} = \frac{\pi}{64}(D^2 - d^2)\\ \hspace{0.5cm} = 46.36\hspace{0.05cm}\times\hspace{0.05cm}10^6\hspace{0.05cm}mm^4$

$I = AK^2\\ K = \sqrt{\frac{I}{A}} = \sqrt{\frac{46.36\hspace{0.05cm}\times\hspace{0.05cm}10^6}{11.30\hspace{0.05cm}\times\hspace{0.05cm}10^3}}\\ K = 64.05\hspace{0.05cm}mm$

$P_{Rankine} = \frac{\sigma_{cr}\hspace{0.05cm}\times\hspace{0.05cm}A}{1 + \alpha (\frac{L_c}{K})^2}\\ \hspace{0.25cm} = \frac{550\hspace{0.05cm}\times\hspace{0.05cm}11.30\hspace{0.05cm}\times\hspace{0.05cm}10^3}{1 + \frac{1}{1600}(\frac{l}{2K})^2}\\ \hspace{0.25cm}\frac{550\hspace{0.05cm}\times\hspace{0.05cm}11.30\hspace{0.05cm}\times\hspace{0.05cm}10^3}{1 + \frac{1}{1600}(\frac{4.5\hspace{0.05cm}\times\hspace{0.05cm}10^3}{2\hspace{0.05cm}\times64.05})^2}\\ \hspace{0.25cm} = 3.5\hspace{0.05cm}\times\hspace{0.05cm}10^6\hspace{0.05cm}N = 3.5\hspace{0.05cm}\times\hspace{0.05cm}10^3\hspace{0.05cm}KN$

$FOS = \frac{P_{Rankine}}{P_{Safe}}\\ 4 = \frac{3.5\hspace{0.05cm}10^3}{P_{Safe}}\\ P_{safe} = 875\hspace{0.05cm}\times\hspace{0.05cm}10^3\hspace{0.05cm}KN$

Please log in to add an answer.