written 6.0 years ago by
teamques10
★ 68k
|
•
modified 6.0 years ago
|
1.Calculation of moment of inertia $I_{NA}$ and $\bar y$:
$A=120*20+100*25=4900 mm^2$
$\bar y_{base} = \frac{100*25*\frac{100}{2} + 20*120 * \frac{20}{2}+100}{100*25+20*120}$
$\bar y_{top}=120-\bar y_{base}=40.61mm$
$I_{base}=\frac{25*100^3}{3} + \frac{120*20^3}{12} + 120*20*(100+\frac{20}{2})^2$
$=37.453*10^6 mm^4$
$I_{NA}=I_{base}- A{\bar y_{base}}^2$
$=37.453*10^6-4900*79.39^2$
$6.56*10^6 mm^4$
2.A s/s simply supported beam has a span of 9m and carried a UDL of 1600 N/m over entire span.
Max shear force F=$\frac{1600*9}{2}$
$F=7200N$
3.Calculation of maximum shear stress:
Let shear stress at section 1-1 be $q_{1-1}$
$q=\frac{F*A\bar y}{I_{NA}b}$
$q_{1-1}- \frac{7200*(120*20* (\bar y_{top} - \frac{20}{2}}{6.56*10^6*b}$
when b=120mm and $y_{top}=40.61mm$
$q_{1-1}=0.67 N/mm^2$ (1)
when b=25mm and $ \bar y_{top}=40.61mm$
$q_{1-1}=3.23 N/mm^2$ (2)
Let shear stress as neutral axis be $q_{NA}$
$q_{NA}= \frac{7200*79.39*25*\frac{79.39}{2}}{6.56*10^6*25}$
$q_{NA}=3.46 N/mm^2$
On comparing 1,2,3
$q_{NA}=3.46 N/mm^2$ is maximum