written 6.1 years ago by
teamques10
★ 69k
|
•
modified 6.1 years ago
|
- Calculation of moment of inertia and $\bar y_{base}$
$I_{NA}=\frac{250*(20+160+20)^3}{12}-\frac{(250-10)*160^3}{12}$
$I_{NA}=84.75*10^6 mm^4$
$\bar y_{base}=\frac{250*20*\frac{20}{2}+10*160*(20+\frac{160}{2})+250*20*(20+160+\frac{20}{2})}{250*20+10*160+250*20}$
$\bar y_{base}=100mm$
$F=80KN=80*10^3 N$ (given)
- Calculation of shear stress:
$q_{1-1}=\frac{F*A \bar y}{Ib}$
$=\frac{80*10^3*20*250*(100-\frac{20}{2})}{84.75*10^6*b}$
When b=10mm, $q_{1-1}=42.47 N/mm^2$
When b=250mm, $q_{1-1}= 1.69 N/mm^2$
$q_{NA}=\frac{80*10^3*[250*20*(100-\frac{20}{2})+(100-20)*10*(\frac{100-20}{2})]}{84.75*10^6*10}$
$q_{NA}=45.49 N/mm^2$ (maximum at neutral axis always for symmetrical section)