written 6.1 years ago by | • modified 5.1 years ago |
If the maximum permissible bending stress is 125 MPa. Find the moment of resistance of beam. Also find the maximum intensity of UDL over an entire span.
written 6.1 years ago by | • modified 5.1 years ago |
If the maximum permissible bending stress is 125 MPa. Find the moment of resistance of beam. Also find the maximum intensity of UDL over an entire span.
written 6.1 years ago by |
$\sigma = 125\hspace{0.05cm}N/mm^2\\ y = \frac{220}{2} = 110\hspace{0.05cm}mm\\ I = \frac{bd^3}{12} - 2(\frac{bd^3}{12})\\ \hspace{0.05cm} = \frac{120\hspace{0.05cm}\times\hspace{0.05cm}22063}{12} - 2\hspace{0.05cm}(\frac{55\hspace{0.05cm}\times\hspace{0.05cm}200^3}{12})\\ \hspace{0.05cm} = 33.15\hspace{0.05cm}\times\hspace{0.05cm}10^6\hspace{0.05cm}mm^4$
$\frac{M}{I} = \frac{\sigma}{y}\\ M = \frac{125}{110}\hspace{0.05cm}\times\hspace{0.05cm}33.15\hspace{0.05cm}\times\hspace{0.05cm}10^6 = 3.89\hspace{0.05cm}\times\hspace{0.05cm}10^6\hspace{0.05cm}Nmm$
$M_{max} = \frac{WL^2}{8}\\ 3.8\hspace{0.05cm}\times\hspace{0.05cm}10^6 = \frac{W\hspace{0.05cm}\times\hspace{0.05cm}(5\hspace{0.05cm}\times\hspace{0.05cm}10^3)^2}{8}\\ W = 1.2\hspace{0.05cm}N/mm$