0
2.3kviews
A cross section of simply supported beam of span 5m is symmetrical I section having width of flange 120mm , overall depth is 220 mm and uniform thickness 10mm.

If the maximum permissible bending stress is 125 MPa. Find the moment of resistance of beam. Also find the maximum intensity of UDL over an entire span.

1 Answer
0
108views

enter image description here

$\sigma = 125\hspace{0.05cm}N/mm^2\\ y = \frac{220}{2} = 110\hspace{0.05cm}mm\\ I = \frac{bd^3}{12} - 2(\frac{bd^3}{12})\\ \hspace{0.05cm} = \frac{120\hspace{0.05cm}\times\hspace{0.05cm}22063}{12} - 2\hspace{0.05cm}(\frac{55\hspace{0.05cm}\times\hspace{0.05cm}200^3}{12})\\ \hspace{0.05cm} = 33.15\hspace{0.05cm}\times\hspace{0.05cm}10^6\hspace{0.05cm}mm^4$

$\frac{M}{I} = \frac{\sigma}{y}\\ M = \frac{125}{110}\hspace{0.05cm}\times\hspace{0.05cm}33.15\hspace{0.05cm}\times\hspace{0.05cm}10^6 = 3.89\hspace{0.05cm}\times\hspace{0.05cm}10^6\hspace{0.05cm}Nmm$

$M_{max} = \frac{WL^2}{8}\\ 3.8\hspace{0.05cm}\times\hspace{0.05cm}10^6 = \frac{W\hspace{0.05cm}\times\hspace{0.05cm}(5\hspace{0.05cm}\times\hspace{0.05cm}10^3)^2}{8}\\ W = 1.2\hspace{0.05cm}N/mm$

Please log in to add an answer.