Let F be the shear force in N
Average shear stress $q_{avg}=\frac{total shear force}{total area}$
$q_{avg}=\frac{F}{b*d}$
Now, shear stress at (1)-(1) section is $q_{1-1}$,
$q_{1-1}=\frac{F}{Ib}*A*\bar y$
$=\frac{F*(b*(\frac{h}{2}-y))*[y+\frac{1}{2}(\frac{h}{2}-y)]}{\frac{b*h^3*b}{12}}$
$=\frac{12F*(\frac{h}{2}-y)*[y+\frac{h}{4}-\frac{y}{2})]}{b*h^3}$
$=\frac{12F}{bh^3}[(\frac{h}{2}-y)(\frac{h}{4}+\frac{y}{2})]$
$=\frac{12F}{bh^3}(\frac{h}{2}-y)*\frac{1}{2}(\frac{h}{2}+y)$
$q_{1-1}=\frac{6F}{bh^3}[(\frac{h}{2}^2-y^2]$ (parabolic equation)
q will be max when y=0 i.e at neautral axis (NA)
$q_{max}=\frac{6F}{bh^3}*\frac{h^2}{4}=\frac{3}{2}*\frac{F}{bh}$
And also, q will be minimum or zero when y=\frac{h}{2} i.e at extreme fibre.
Now, $\frac{q_{max}}{q_{avg}}=\frac{\frac{3}{2}(F/bh)}{F/bh}=\frac{3}{2}$
$q_{max}=\frac{3}{2} q_{avg}$ for solid rectangular section
F=110KN=$110*10^3 N$
$\bar y_{base}=\frac{220*20*\frac{20}{2}+300*15*(20+\frac{300}{2})+220*20*(20+300+\frac{20}{2})}{220*20+300*15+220*20}$
$\bar y_{base}=170mm$
A=22020+30015+220*20=13300mm
$I_{NA}=\frac{220*(20+300+20)^3}{12}-\frac{(220-15)*300^3}{12}$
$I_{NA}=200*\frac{340^3}{12}-\frac{205*300^3}{12}$
$I_{NA}=2.59*10^8 mm^4$
Now, shear stress:
$q_{1-1}=\frac{F*A \bar y}{Ib}$
$=\frac{110*10^3*20*220*(170-\frac{20}{2})}{2.59*10^8*b}$
When b=15mm, $q_{1-1}=19.93 N/mm^2$ (top and bottom flange will be same; due to symmetrical I section)
When b=220mm, $q_{1-1}= 1.35 N/mm^2$
Now, shear syress at N-A i.e q_{N-A}
$q_{NA}=\frac{110*10^3*[220*20*(170-\frac{20}{2})+(170-20)*15*(\frac{170-20}{2})]}{2.59*10^8*15}$
$q_{NA}=24.71 N/mm^2$ (maximum)