written 6.0 years ago by
teamques10
★ 68k
|
•
modified 6.0 years ago
|
Let the safe point load at mid span i.e \frac{2}{2}=1m be W (N)
Now, moment of inertia of section about neutral axis
$I=\frac{100*(50+50+50)^3}{12}=2.8125*10^7 mm^4$
Maximum shear force F=\frac{W}{2}
Now, shear stress at the glue joint=$q_{1-1}=\frac{F a bar y}{Ib}$
where $y_{top}=\frac{50*100*\frac{50}{2}+50*100*(50+\frac{50}{2})+50*100*(50+50+\frac{50}{2})}{50*100+50*100+50*100}$
$\bar y_{top}=75mm$
$q_{1-1}=0.35 N/mm^2$ at glue joint (given)
And b=100mm and $Q=50*100 m^2$ is area above (1)-(1)
$\bar y=75-\frac{50}{2}=50mm$
$q_{1-1}=0.35=F*(\frac{50*100*50}{2.8125*10^7*100}$
F=3937.5N
i.e W=3937.5*2
W=7875 N
The safe point load the beam can carry at mid span is 7875 N