0
4.7kviews
A steel rod is placed between two copper bar, each having same area and length. As a steel bar at 15 deg Cel. At this stage they are connected together when the temperature is raised to 315 deg Cel.

The length of the bar is increased by 1.5mm. Determine the original length and find the stresses in the bar. Take $E_S= 2.1X10^5 MPa; α_S= 12X10^{-6} /°C; E_C= 1X10^5 MPa; α_S= 17.5X10^{-6} /°C$

1 Answer
0
695views

enter image description here

For parallel combination

$2\hspace{0.05cm}\times\hspace{0.05cm}P_{cu} = P_{st}\\ 2\hspace{0.05cm}\times\hspace{0.05cm}\sigma_cA_c = \sigma_sA_s\\ 2\hspace{0.05cm}\times\hspace{0.05cm}\sigma_c\hspace{0.05cm}\times\hspace{0.05cm}1 = \sigma_s\hspace{0.05cm}\times\hspace{0.05cm}1\\ \hspace{01.5cm} \sigma_s = 2\hspace{0.05cm}\sigma_c$

$(\alpha L t)_{cu} + (\alpha L t)_{st} - (\frac{PL}{AE})_{cu} - (\frac{PL}{AE})_{st} = 1.5\\ (17.5\hspace{0.05cm}\times\hspace{0.05cm}10^{-6}\hspace{0.05cm}\times\hspace{0.05cm}L\hspace{0.05cm}\times\hspace{0.05cm}300) + (12\hspace{0.05cm}\times\hspace{0.05cm}10^{-6}\hspace{0.05cm}\times\hspace{0.05cm}L\hspace{0.05cm}\times\hspace{0.05cm}300) - (\frac{\sigma_c\hspace{0.05cm}\times\hspace{0.05cm}L}{1\hspace{0.05cm}\times\hspace{0.05cm}10^5})_{cu} - (\frac{2\sigma_{cu}\hspace{0.05cm}\times\hspace{0.05cm}L}{2.1\hspace{0.05cm}\times\hspace{0.05cm}10^5})_{st} = 1.5\\ \epsilon_{cu} + \epsilon_{st} = (\alpha_{cu} - \alpha_{st}).t\\ (\frac{\sigma}{E})_{cu} + (\frac{\sigma}{E})_{st} = (\alpha_{cu} - \alpha_{st})t\\ \frac{0.5\hspace{0.05cm}\sigma_{st}}{1\hspace{0.05cm}\times\hspace{0.05cm}10^5} + \frac{\sigma_{st}}{2.1\hspace{0.05cm}\times\hspace{0.05cm}10^5} = (17.5\hspace{0.05cm}\times\hspace{0.05cm}10^{-6} - 12\hspace{0.05cm}\times\hspace{0.05cm}10^{-6})\hspace{0.05cm}\times\hspace{0.05cm}300\\ \sigma_{st} = 169.024\hspace{0.05cm}N/mm^2\\ \sigma_{cu} = 84.51\hspace{0.05cm}N/mm^2\\ L = 2.857\hspace{0.05cm}mm$

Please log in to add an answer.