written 6.1 years ago by
teamques10
★ 68k
|
•
modified 6.1 years ago
|
For parallel combination
$\hspace{0.8cm}P_{Al} = P_{St}\\
\sigma_{Al}\hspace{0.05cm} .\hspace{0.05cm} A_{Al} = \sigma_{st}\hspace{0.05cm} .\hspace{0.05cm} A_{st}\\
\sigma_{Al}\hspace{0.05cm} \times\hspace{0.05cm} 2000 = \sigma_{st}\hspace{0.05cm} \times\hspace{0.05cm} 8000\\
\hspace{1cm} \sigma_{Al} = 4\hspace{0.05cm} \sigma_{st}\\$
(i) Stresses in AL and ST
$T = 140 - 20 = 120\hspace{0.05cm} ^\circ{C}\
(\alpha L t)_{Al} + (\alpha L t)_{st} - (\frac{PL}{AE})_{Al} - (\frac{PL}{AE})_{st} = 0.5\
(23\hspace{0.05cm} \times\hspace{0.05cm} 10^{-6}\hspace{0.05cm} \times\hspace{0.05cm} 300\hspace{0.05cm} \times\hspace{0.05cm} 120) + (18\hspace{0.05cm} \times\hspace{0.05cm} 10^{-6}\hspace{0.05cm} \times\hspace{0.05cm} 250\hspace{0.05cm} \times\hspace{0.05cm} 120) - (\frac{4\hspace{0.05cm} \sigma_{st}\hspace{0.05cm} \times\hspace{0.05cm} 300}{70\hspace{0.05cm} \times\hspace{0.05cm} 10^3}) - (\frac{\sigma_{st}\hspace{0.05cm} \times\hspace{0.05cm} 250}{190\hspace{0.05cm}\times\hspace{0.05cm} 10^3}) = 0.5\
\sigma_{st} = 53\hspace{0.05cm} MPa\
\sigma_{Al} = 214\hspace{0.05cm} MPa$
(ii) Exact lengths of AL and ST
Exact length in AL = $L + \delta L\
=300 + (\frac{PL}{AE})_{Al}\
=300 + (\frac{\sigma_{Al} + L_{Al}}{E_{Al}})\
=300.91\hspace{0.05cm} mm$