0
2.5kviews
A bar made up of Aluminium and Steel is rigidly fixed between the supports as shown in fig. If the temperature is 200 deg C. Find the stresses in the materials. Take yield support as 0.1mm.

enter image description here

1 Answer
0
177views

Given

$E_{st} = 2.1\hspace{0.05cm}\times\hspace{0.05cm}10^5,\hspace{0.25cm}E_{Al} = 0.7\hspace{0.05cm}\times\hspace{0.05cm}10^5\\ T = 200\hspace{0.05cm}^\circ{C},\hspace{0.9cm}\delta = 0.1\\ \alpha_{st} = 12\hspace{0.05cm}\times\hspace{0.05cm}10^{-6}/\hspace{0.05cm}^\circ{C}\\ \alpha_{Al} = 23\hspace{0.05cm}\times\hspace{0.05cm}10^{-6}/\hspace{0.05cm}^\circ{C}$

Solution

$A_{St} = \frac{\pi}{4}\hspace{0.05cm}\times\hspace{0.05cm}10^2 = 78.54\hspace{0.05cm}mm^2\\ A_{Al} = \frac{\pi}{4}\hspace{0.05cm}\times\hspace{0.05cm}20^2 = 314.16\hspace{0.05cm}mm^2\\ (\alpha L t)_{Al} + (\alpha L t)_{st} = (\frac{PL}{AE})_{Al} + (\frac{PL}{AE})_{St} + 0.1\\ (\alpha L t)_{Al} + (\alpha L t)_{st} - (\frac{\sigma L}{E})_{Al} - (\frac{\sigma L}{E})_{St} = 0.1\\ (\alpha_{Al}. L_{Al}.t) + (\alpha_{St}. L_{St}.t) - \frac{\sigma_{Al}.L_{Al}}{E_{al}} - \frac{\sigma_{st}.L_{st}}{E_{st}} = 0.1$

For parallel combination,

$\hspace{0.6cm}P_{Al} = P_{St}\\ \sigma_{Al}\hspace{0.05cm}.\hspace{0.05cm}A_{Al} = \sigma_{st}\hspace{0.05cm}.\hspace{0.05cm}A_{st}\\ \sigma_{Al}\hspace{0.05cm}\times\hspace{0.05cm}314.16 = \sigma_{st}\hspace{0.05cm}\times\hspace{0.05cm}78.5\\ \sigma_{Al} = 0.24\hspace{0.05cm}\sigma_{st}$

Therefore,

$(23\hspace{0.05cm}\times\hspace{0.05cm}10^{-6}\hspace{0.05cm}\times\hspace{0.05cm}300\hspace{0.05cm}\times\hspace{0.05cm}200) + (12\hspace{0.05cm}\times\hspace{0.05cm}10^{-6}\hspace{0.05cm}\times\hspace{0.05cm}600\hspace{0.05cm}\times\hspace{0.05cm}200) - (\frac{0.24\sigma_{st}\hspace{0.05cm}\times\hspace{0.05cm}300}{0.7\hspace{0.05cm}\times\hspace{0.05cm}10^5}) - (\frac{\sigma_{st}\hspace{0.05cm}\times\hspace{0.05cm}600}{2.1\hspace{0.05cm}\times\hspace{0.05cm}10^5}) = 0.1\\ \hspace{05cm}\sigma_{st} = 700\hspace{0.05cm}N/mm^2\\ \hspace{05cm}\sigma_{Al} = 0.24\hspace{0.05cm}\sigma_{st} = 168\hspace{0.05cm}N/mm^2$

Please log in to add an answer.