Given
Static lift $H_{3}$=h_{s}+h_{d}=40m
Suction lift $h_{3}$=3m
$d_{3}=d_{d}$=35cm=0.35 m
h$f_{3}$=2m,hfd=6m
impeller outer diameter
$O_{2}$=0.5m
width $B_{2}$=3 cm=0.03m
N=1200 rpm
Exit blade angle
$\phi=20^{\circ}$
$n_{mano}$=1200 rpm
Exit blade angle
$\phi=20^{\circ}$
1) Discharge Q
$u_{2}=\frac{\pi\times D_{2}N}{60}=\frac{\pi\times 0.5\times 1200}{60}$=31.42 m/s
$n_{mano}=\frac{Vw_{s}-u2}{gH_{m}}$
Hm=$\frac{Vws=u2}{gHm}$
Hm=Hs+$hf_{3}+hfd+\frac{{Vd}^{2}}{2g}$
on neglecting $\frac{Vd^{2}}{2}$ since it is negligible the manometer head
$Hm=Hg+hfs+hfd$
=40+2+6
=48m
0.85=$\frac{vw_{2}\times 31.42}{9.81\times 48}$
Vw2=12.74m/s
We have
$Vw2=u2-HF$
$u2-\frac{Vf2}{tan\phi}$
12.74=81.42-$\frac{Vf2}{tan 20}$
Vf2=6.8m/s
Q=$\pi D_{2}B_{2}Vf_{2}$
=$\pi \times 0.5\times 0.03\times 6.8$
=0.3204m^{3}/s
2 Pressure Head at suction $H_{3}$
Velocity in suction and delivery pipes
$V_{Q}=V_{d}=\frac{Q}{A}=\frac{0.3201}{{\frac{\pi}{4}}(0.35)^{2}}$=3.33m/s
Suction head H3=h3+hfs+$\frac{Vs}{2g}$
=3+2+$\frac{(3.33)^{2}}{2\times 9.81}$
=5.565m
- Delivery head Hd:
Hd=Hm-Hs-$\frac{{Vd}^{2}}{2}$
=48-5.565-$\frac{(3.33)^{2}}{2\times 9.81}$
=41.87m