0
1.1kviews
Fig shows a steel wire and copper wire each of length (L) and carrying axial load (P). For the same diameter of the wire.

i)Find The ratio of extension of copper wire to the steel wire.

ii) For the same extension find the diameter of the copper wire to the steel wire.

Take: $E_S =2X10^5 MPa, E_{CU} = 1.2X10^5 MPa.$

enter image description here

1 Answer
0
39views

Given

$E_s = 2\hspace{0.05cm}\times\hspace{0.05cm}10^5\hspace{0.05cm}N/mm^2,\hspace{05cm}E_{cu} = 1.2\hspace{0.05cm}\times\hspace{0.05cm}10^5\hspace{0.05cm}N/mm^2$

To Find

(i) For $d_{st} = d_{cu},\hspace{03cm}\frac{\delta_{cu}}{\delta_{st}} = ?\\ (ii)For \delta_{cu} = \delta_{st}\hspace{02cm}\frac{d_{cu}}{d_{st}} = ?$

Solution

(i)$\frac{\delta_{cu}}{\delta_{st}} = \frac{(\frac{PL}{AE})_{cu}}{(\frac{PL}{AE})_{st}} = \frac{E_{st}}{E_{cu}} = \frac{2\hspace{0.05cm}\times\hspace{0.05cm}10^5}{1.2\hspace{0.05cm}\times\hspace{0.05cm}10^5}\\ \frac{\delta_{cu}}{\delta_{st}} = 1.66$

(ii)$\delta_{cu} = \delta_{st}\\ (\frac{PL}{AE})_{cu} = (\frac{PL}{AE})_{st}\\ \frac{P_{cu}L{cu}}{A_{cu}E_{cu}} = \frac{P_{st}L_{st}}{A_{st}E_{st}}\\ \frac{1}{\frac{\pi}{4}\hspace{0.05cm}\times\hspace{0.05cm}d_{cu}^2\hspace{0.05cm}\times\hspace{0.05cm}1.2\hspace{0.05cm}\times\hspace{0.05cm}10^5} = \frac{1}{\frac{\pi}{4}\hspace{0.05cm}\times\hspace{0.05cm}d_{st}^2\hspace{0.05cm}\times\hspace{0.05cm}2\hspace{0.05cm}\times\hspace{0.05cm}10^5}\\ \frac{d_{cu}}{d_{st}} = \sqrt{1.67} = 1.29 mm$

Please log in to add an answer.