0
4.9kviews
Francis turbine has H=30 m, D1=1.2 m inlet and D2= 0.6 m at outlet. Guide blade angle is 15 and vane angle at inlet 90, water at exit leaves vanes without tangential

velocity and velocity of flow is constant. Assume number of frictional classes. find speed of wheel and vane angle at exit

1 Answer
0
349views

Given:-

H=30m

D1=1.2 m

D2=0.6 m

enter image description here

Guide blade angle α=15

inlet vane angle Θ=90

i.e Vr1=vf1andVw1=0

vw2=0

vf1=vf2=vf

enter image description here

speed of whee, Nand vane angle ϕ at exit

u1vw2=v1cosα=v1cos/5

vf1=v1sinα=vf2=v2

vf1=vf2=v2=v1sin/5

H=Vw1.u1g+V222g

30=V1cos15×V1cos159.81+(v1sin15)22×9.81

Θ=tan1Vf1BD=tan1(2.150.093)=87.52.....

Θ=tan1vf2u2=tan1(2.156.05)=19.564...ans

v2=vf2=2.15m/s

ii) Head at inlet of turbine H:

H=$\frac{vw_{1}}{9}+\frac{v^{2}_{2}}{29}=\frac{12.193\times …

Create a free account to keep reading this post.

and 2 others joined a min ago.

Please log in to add an answer.