written 6.2 years ago by | • modified 5.1 years ago |
velocity and velocity of flow is constant. Assume number of frictional classes. find speed of wheel and vane angle at exit
written 6.2 years ago by | • modified 5.1 years ago |
velocity and velocity of flow is constant. Assume number of frictional classes. find speed of wheel and vane angle at exit
written 6.2 years ago by |
Given:-
H=30m
$D_{1}$=1.2 m
$D_{2}$=0.6 m
Guide blade angle $\alpha=15^{\circ}$
inlet vane angle $\Theta =90^{\circ}$
i.e $Vr_{1}=vf_{1} and Vw_{1}$=0
$vw_{2}$=0
$vf_{1}=vf_{2}=vf$
speed of whee, Nand vane angle $\phi$ at exit
$u_{1}vw_{2}=v_{1}cos\alpha=v_{1}cos/5$
$vf_{1}=v_{1}sin \alpha=vf_{2}=v_{2}$
$vf_{1}=vf_{2}=v_{2}=v_{1}sin/5$
H=$\frac{Vw_{1.u_{1}}}{g}+\frac{V_{2}^{2}}{2g}$
30=$\frac{V_{1}cos 15\times V_{1}cos15}{9.81}+\frac{(v_{1}sin15)^{2}}{2\times 9.81}$
$\Theta=\tan^{-1}\frac{Vf_{1}}{BD}=tan^{-1}(\frac{2.15}{0.093})=87.52^{\circ}.....$
$\Theta=tan^{-1}\frac{vf_{2}}{u_{2}}=tan^{-1}(\frac{2.15}{6.05})=19.564^{\circ}...ans$
$v_{2}=vf_{2}$=2.15m/s
ii) Head at inlet of turbine H:
H=$\frac{vw_{1}}{9}+\frac{v^{2}_{2}}{29}=\frac{12.193\times 12.1}{9.81}+\frac{(2.15)^{2}}{2\times 9.81}$= 15.275m
iii) Power developed P:
P=$\frac{mVw_{1}-u_{1}}{1000}K/ N=\frac{1857.5\times 12.193\times 12.1}{1000}$=274.05 kW
iv)Hydralic efficiency $n_{h}$
$h_{h}:\frac{vw_{1}u_{1}}{9^{m}}=\frac{12.193\times 12.1}{9.81\times15.275}$=0.9846 or 98.46% ans
v) Inlet and outlet diagrams are shown in fig
$30\times 9.81=0.933v_{1}^{2}+0.0335v_{1}^{2}$
$v_{1}$=17.45 m/s
$u_{1}=v_{1}cos \alpha=17.45 cos 15$
=16.86 m/s
$u_{1}=\frac{\pi D_{1}N}{60}$
16.86=$\frac{\pi \times 1.2\times N}{60}$
$Vf_{1}=vf_{2}=v_{1}sin\alpha$
=17.45 sin 15
4.516m/s
$u_{2}=\frac{\pi D_{2}N}{60}$
$\frac{\pi\times 0.6\times 268.34}{60}$
=8.43 m/s
$\phi=tan^{-1}(\frac{vf_{2}}{u_{2}})$
$tan^{-1}(\frac{4.516}{843})$
=28.18$^{\circ}$