0
4.8kviews
Hub diameter of Kapilan turbine working under head of 12m is 0.35 times diameter of runner. The turbine is running at 100 rpm. Vane angle of extreme edge of runner outlet is 15 and flow ratio 0.6
1 Answer
1
563views
written 6.2 years ago by | • modified 6.2 years ago |
Given:- H=12m, hub dia $D_{b}=0.35\times runner \ dia D$
N=100 rpm $\phi=15^{\circ}$
flow ratio $k_{f}=\frac{vf_{1}}{\sqrt{2gH}}$=0.6
$vf_{1}=0.6\sqrt{2gH}$
=0.6$\times\sqrt{2\times 9.81\times 12}$=9.206 m/s
$vf_{2}=vf_{1}$=9.206 m/s
$vm_{2}$=0 since discharge is areial
From Outlet velocity $\triangle EFG$
tan$\phi =\frac{vf_{2}}{u_{2}}$
tan15=$\frac{9.206}{u_{2}}$
$u_{2}$=34.357 m/s
But $u_{1}=u_{2}=u$=34.357 m/s
i) Diameter of runner $D_{o}$
$u_{1}=\frac{\pi DoN}{60}$
34.357=$\frac{\pi\times D_{o}\times 100}{60}$
$D_{o}$=6.562 m
ii) Diameter if boss $D_{b}$:
$D_{b}$=0.35
$D_{b}=0.35\times 6.562$
=2.297m
iii) Discharge through runner Q:
Q=$\frac{\pi}{4}(D^{2}_{o}-D^{2}_{o})$
=$\frac{\pi}{4}(6.6562^{2}-2.297^{2})\times 9.206$
=273.19 $m^{3}/s$
ADD COMMENT
EDIT
Please log in to add an answer.