0
4.8kviews
Hub diameter of Kapilan turbine working under head of 12m is 0.35 times diameter of runner. The turbine is running at 100 rpm. Vane angle of extreme edge of runner outlet is 15 and flow ratio 0.6
1 Answer
1
563views

Given:- H=12m, hub dia $D_{b}=0.35\times runner \ dia D$

N=100 rpm $\phi=15^{\circ}$

flow ratio $k_{f}=\frac{vf_{1}}{\sqrt{2gH}}$=0.6

$vf_{1}=0.6\sqrt{2gH}$

=0.6$\times\sqrt{2\times 9.81\times 12}$=9.206 m/s

$vf_{2}=vf_{1}$=9.206 m/s

enter image description here

$vm_{2}$=0 since discharge is areial

From Outlet velocity $\triangle EFG$

tan$\phi =\frac{vf_{2}}{u_{2}}$

tan15=$\frac{9.206}{u_{2}}$

$u_{2}$=34.357 m/s

But $u_{1}=u_{2}=u$=34.357 m/s

i) Diameter of runner $D_{o}$

$u_{1}=\frac{\pi DoN}{60}$

34.357=$\frac{\pi\times D_{o}\times 100}{60}$

$D_{o}$=6.562 m

ii) Diameter if boss $D_{b}$:

$D_{b}$=0.35

$D_{b}=0.35\times 6.562$

=2.297m

iii) Discharge through runner Q:

Q=$\frac{\pi}{4}(D^{2}_{o}-D^{2}_{o})$

=$\frac{\pi}{4}(6.6562^{2}-2.297^{2})\times 9.206$

=273.19 $m^{3}/s$

Please log in to add an answer.