0
3.7kviews
An inward flow reaction turbines has external and internal diameters as 1.10m and 0.55 m.The turbine is running 210 r.p.m. Width of turbine inlet is 25cm and velocity flow through runner is constant

and equal to 2.15 m/sec .The guide blades make an angle of $10^{\circ}$ to the tangent of wheel and discharge at the outlet of the turbine is radical

Determine

i) The runner blade angles of inlet and outlet

ii) Head at inlet of the turbine

iii) Power developed

iv) Hydraulic efficiency

v) Draw the inlet and outlet velocity triangles

1 Answer
0
83views

Inlet diameter or external diameter

$D_{1}$=1.1m

$D_{2}$=0.55m

N=210 rpm

$B_{1}=25 cm=0.25 m$

$vE_{1}=vf_{2}$=2.15 m

Guide blade angle d=$10^{\circ}$

Discharge at outlet is radical i.e $\beta=90^{\circ}$

$vw_{2}$=0

enter image description here

i) Runner blade angle at inlet $\Theta$ and at outlet $\Theta$:-

u=$\frac{\pi D_{1},N}{60}=\frac{\pi \times 11\times 210}{60}=12.1 m/s$

$u_{2}=\frac{\pi D_{2}N}{60}=\frac{\pi\times 0.55\times 210}{60}$

Q=$\pi D_{1}B_{1}V_{1}=\pi\times 1.1\times 0.25\times 2.15=1.8575m^{3}/s$

mass flow rate

m=pQ=1000$\times 1.8375$=18575 kg/s

from inlet velocity $\triangle$ACD we get

$Vm_{1}=AD=\frac{VA}{tan\alpha}=\frac{2+5}{tan10}$=12.193 m/s

$V_{1}=\frac{Vw_{1}}{cos\alpha}=\frac{12.193}{cos10}$=12.381 m/s

BD-$Vm_{1}-U_{1}$=12.193-12.1=0.093 m/s

Please log in to add an answer.