written 6.2 years ago by | • modified 5.1 years ago |
wheel diameter=.0.12
Determine
i) The required discharge
ii) Wheel diameter
iii) Diameter and number of jets
iv) specific speed
written 6.2 years ago by | • modified 5.1 years ago |
wheel diameter=.0.12
Determine
i) The required discharge
ii) Wheel diameter
iii) Diameter and number of jets
iv) specific speed
written 6.2 years ago by | • modified 6.2 years ago |
$H=145m, \ \ \ N=225rpm \ \ \ \ p_{3}=8500kw$
$nmech=0.75 \ \ \ hh=0.88 \ \ \ Cx=0.98$
Speed ratio kw=$\frac{u}{V1}$=0.48
$\frac{jet \ diameter \,d}{Wheel \ diameter \ D}$=0.12
i) Required discharge Q
Input power=shaft power $\times \frac{1}{h_{h}}\times \frac{1}{n_{mech}}$
$pg QH=P_{s}\times \frac{1}{h_{h}}\times \frac{1}{h_{m}}$
$1000\times 9.81\times Q\times 145=(8500\times 10^{3})\times \frac{1}{0.88}\times \frac{1}{0.75}$
Q=9.054$m^{3}/s$
ii) Wheel diameter D
Velocity of jet V=Cr$\sqrt{2gH}=0.98\sqrt{2\times 9.81\times 145}$=52.27m/s
Ku=0.48=$\frac{wheel \ velocity \ u}{jet \ velocity \ V1}$
u=$0.48\times 52.27=25.09m/s$
$u=\frac{\pi DN}{60}$
25.096=$\frac{\pi\times D\times 225}{60}$
D=2.18m
iii)Jet diameter d and number of jets n
Given $\frac{d}{D}$=0.12;
d=$0.12\times 2.13$
=0.2556m
Discharge jet, q$A\times V_{1}$
=$\frac{\pi}{4}\times d^{2}\times V_{1}$
$\frac{\pi}{4}\times (0.2556)^{2}\times 52.27$
=$2.682m^{3}/s$
Number of jets,
m=$\frac{Total \ discharge \ of \ Q}{Discharge \ let \ q}=\frac{9.054}{2.682}$
=3.376 i.e 4 jets
iv) Sepcific Speed Ns:
Ns$\frac{N\sqrt{P_{3}}}{H^{5/4}}=\frac{225\sqrt{8500}}{(145^{5/4})}$
=41.227