Inlet and outlet Velocity diagram are
$v_{1}$=40m/s u=20m/s
$\alpha=30^{\circ}= \ \ \ \beta=180-20=60^{\circ}$
i) Inlet Vane angle $\Theta$and Outlet Vane angle $\phi$
Consider inlet velocity $\triangle ACD$
AD=$Vw_{1}=V_{1}cos\alpha$
40Cos 30=34.64m/s
CD=$V_{f}=V_{1}sin\alpha=40 sin30$
=20m/s
BD=AD-AB
=34.64-10=14.64m/s
$Vr_{1}=\sqrt{(BD)^{2}+(CD)^{2}}$
=\sqrt{(14.64)^{2}+(20)^{2}}=24.78m/s
Vr_{2}=Vr_{1}=24.78 m/s
(On neglecting blace friction)
$\Theta=tan^{-1}(\frac{Vf_{1}}{BD})=tan^{-1}(\frac{20}{14.64})$
$\Theta=53.79^{\circ}$
Consider outlet $\triangle$ EFG and apply sine rule.
$\frac{Vr_{2}}{sin(180-\beta)}=\frac{\mu}{sin(\beta-\phi)}$
$\frac{24.78}{sin(180-60)}=\frac{20}{sin(20-\phi)}$
sin(60-$\phi)$=0.699
$\phi$=15.65
$Vw_{2}=fH=Vr_{2}Cos\phi-mu$=
=24.78 Cos 15.65-20
=3.86m/s
ii)Workdone/N of water, W
W==$\frac{1}{9}(Vw_{1}+Vw_{2})4$
$\frac{1}{9.81}\times(34.64+3.86)\times20$
=78.491 Nm/N
iii) Efficiency of system i,e Hydraullie of efficiency
$\frac{Workdone/kg}{K.E supplied/kg}$
=$\frac{Vw_{1}+Vw_{2}}{V^{2}_{2}/2}$
=$\frac{2\times (34.64+3.86)20}{(40^{2})}$
=0.9625
=96.25%