written 6.5 years ago by
teamques10
★ 69k
|
•
modified 6.5 years ago
|
Given
Jet veloicty v2=35m/s
vane velocity, 4=20m/s
α=30∘,β=180−120=60∘
1] Vane angle at inlet Θ and exit , ϕ
from inlet velocity △ACD
Vw=Ac=v1cosα=30.31 m/s
vs1=CD=V1sinalpha
35 sin 30=17.50m/s
BC=Vw1−μ=30.31-20=10.31m/s

vr1BD=√(BC)2+(D)2
√(10.31)2+(17.8)2
20.31 m/s
Θ=tan−1(CDBC)
tan−1(17.510.31)=59.5
Consider outlet velocity △EGH and neglecting blade friction i,e
Vr2=vr1=20.31 m/s
Applying sine rule to △EFG
Vr2sin(180−β)=4sin(B−ϕ)
20.31sin(180−60)=20sin(60−Φ)
sin(60−ϕ)=0.8528
(60−ϕ)=58.52∘
ϕ=1.48∘
FH==Vw2=EH-EF
vr2cosϕ-4
20.31cos1.48-20
=0.303 m/s
ii) work done /N weight of water,W
w=12(Vw1+Vw2)u=19.81×(30.31+0.303)
=62.41 Nm/N weight of water
iii) Hydraullic efficiency
nh=Workdone/kg.wk.Esupplied(w2/2)
2(Vw1+Vw2)v2
2×(30.31+0.303)×20352
=0.9996
=99.96