Given
Jet veloicty $v_{2}$=35m/s
vane velocity, 4=20m/s
$\alpha=30^{\circ},\beta=180-120=60^{\circ}$
1] Vane angle at inlet $\Theta$ and exit , $\phi$
from inlet velocity $\triangle ACD$
$V_{w}=Ac=v_{1}cos\alpha$=30.31 m/s
$vs_{1}=CD=V_{1}sin alpha$
35 sin 30=17.50m/s
BC=$Vw_{1}-\mu=30.31$-20=10.31m/s
$v_{r_{1}}BD=\sqrt{(BC)^{2}+(D)^{2}}$
$\sqrt{(10.31)^{2}+(17.8)^{2}}$
20.31 m/s
$\Theta=tan^{-1}(\frac{CD}{BC})$
$\tan^{-1}(\frac{17.5}{10.31})$=59.5
Consider outlet velocity $\triangle EGH$ and neglecting blade friction i,e
$Vr_{2}=vr_{1}$=20.31 m/s
Applying sine rule to $\triangle EFG$
$\frac{Vr_{2}}{sin(180-\beta)}=\frac{4}{sin(B-\phi)}$
$\frac{20.31}{sin(180-60)}=\frac{20}{sin(60-\Phi)}$
sin$(60-\phi)$=0.8528
$(60-\phi)=58.52^{\circ}$
$\phi=1.48^{\circ}$
FH==$Vw_{2}$=EH-EF
$vr_{2}cos\phi$-4
20.31cos1.48-20
=0.303 m/s
ii) work done /N weight of water,W
w=$\frac{1}{2}(Vw_{1}+Vw_{2})u=\frac{1}{9.81}\times (30.31+0.303)$
=62.41 Nm/N weight of water
iii) Hydraullic efficiency
nh=$\frac{Work done/kg.w}{k.E supplied (w^{2}/2)}$
$\frac{2(Vw_{1}+Vw_{2})}{v^{2}}$
$\frac{2\times(30.31+0.303)\times 20}{35^{2}}$
=0.9996
=99.96