- Calculation of $\bar y$ and $I_N-A$:
$y_b=\bar y_{bottom}=\frac{160*40*\frac{40}{2}+200*20*(40+\frac{200}{2})+20*80*$
$(40+200+\frac{20}{2})}{160*40+200*20+20*80}$
$y_b=\bar y_{bottom}=90.666=90.67$
$\sum A=160*40+200*20+20*80$
$\sum A=12000mm^2$
$y_t=\bar y_{top}=20+200+40-y_b=260-90.67=169.33mm$
$I_{base}=\frac{160*40^3}{3}+\frac{20*200^3}{12}+20*200*140^2+\frac{80*20^3}{12}+80*20*250^2$
$I_{base}=195.12*10^6 mm^4$
- Calculation of maximum compressive stress and safe UDL (w) which the beam can carry:
Bending equation:
$\frac{M}{I}=\frac{y}{y}$
Now, $\frac{M}{I}=\frac{f_t}{y_b}=\frac{f_c}{y_t} i.e \frac{f_t}{y_b}=\frac{f_c}{y_t}$
Let $f_c$ be maximum compressive stress
$f_c=\frac{y_t}{y_b}*{y_t}=\frac{20}{90.67}*169.33=37.35 N/mm^2$
Let w be the UDL the beam carried,
maximum bending moment=$M=\frac{wL^2}{8}=\frac{w*5^2}{8}$
$M=3.125 w (KNm) sagging$
In sagging, top fibre is in compression, bottom fibre is in tension.
$\frac{M}{I}=\frac{f_t}{y_b}$
i.e $3.125w=\frac{y_t*I}{y_b}$
i.e $w=\frac{20*96.55*10^6}{90.67*10^6*3.125}$
$w=6.815 KN/m$