written 6.5 years ago by | modified 5.4 years ago by |
A cast iron beam is of T section as shown in fig. Sketch the bending distribution diagram at point C.
written 6.5 years ago by | modified 5.4 years ago by |
A cast iron beam is of T section as shown in fig. Sketch the bending distribution diagram at point C.
written 6.4 years ago by | • modified 6.4 years ago |
1. Calculation of maximum bending moment :
Let the support reaction at A and B be Va and VB
∑fy=0 (+ve)
VA+VB=1800∗8=14400
∑MB=0 (+ve)
VA∗8−1800∗8∗42=0
VA=7200N
VB=14000−7200=7200N
SF analysis:
SF at A=7200N
AF at any section in AB distant x from A
SF=7200-1800*x
At x=8m, SF at B=7200-1800*8=-7200N
Section f zero shear:7200-1800*x=0
x=4m
Maximum bending moment=7200∗4−1800∗4∗42=14400Nm(sagging)=14400∗103Nmm
2. Calculation of ˉyt , ˉyb and INA : -
Component | Area (a) | C.G.distance | ay | ay2 | Iself |
---|---|---|---|---|---|
mm2 | from 1- 1, y(mm) | mm3 | mm4 | mm4 | |
Top rectangle | 20 x 100 = 2000 | (202) = 10 | 20000 | 2000 * 102 = 200 * 103 | 100∗20312 = 66666.67 |
Bottom rectangle | 120 x 20 = 2400 | 20 + (1202) = 80 | 192000 | 15360 x 103 | 20∗120312 = 2.88 * 106 |
Total | A = 4400 | - | 212000 | 15.56 x 106 | 2.946 x 106 |
Now, ˉyt=∑ayA=2120004400=48.18mm
Moment of inertia of section about axis (1)-(1)
I1−1=∑Iself+∑ay2=2.946∗106+15.56∗106
I1−1=18.506∗106mm4
IN−A=I1−1−Ay2t=18.506∗106−4400∗48.182
INA=8.29∗106mm4
ˉyb=(20+120)−ˉyt=140−48.18=91.82mm
3. Calculation of bending stress:
MI=fy
Let ft and fc be the bending stress in tensile and compression zone i.e
ft=MINA∗ˉyt
ft=14400∗1038.29∗106∗48.18
ft=83.69n/mm2
fc=MINA∗ˉyb
ft=14400∗1038.29∗106∗91.82=159.49N/mm2