written 6.1 years ago by | modified 5.0 years ago by |
A simply supported beam with overhang is loaded as shown in fig. Calculate maximum tensile and compressive stress due to bending.
written 6.1 years ago by | modified 5.0 years ago by |
A simply supported beam with overhang is loaded as shown in fig. Calculate maximum tensile and compressive stress due to bending.
written 6.0 years ago by | • modified 6.0 years ago |
1. Calculation of maximum bending moment:
Let $V_B$ and $V_D$ be the support reaction at B and D.
$\sum F_y=0$
$V_B$ + $V_D$=$20*1+25=45$
$\sum M_D=0$
$V_B*(1.8+1.8)-20*1*(\frac{1}{2}+1.8+1.8)-25*1.8=0$
$V_B=35.278KN$
$V_D=45-35.278=9.72KN$
S.F analysis:
SF at A=0
SF at B but just on LHS of B=-20*1=-20KN
SF at B but just on RHS of B=-20*1+35.278=15.278KN
SF at C from A but just on RHS of $C=-20*1+35.278-25=-9.722KN$
SFat D=9.722KN
BM analysis:
BM at A=0, BM at D=0
BM at B$=-20*1*\frac{1}{2}$=-10KNm
BM at C =9.72*1.8=17.49KNm
Maximum bending moment=$17.5KNm=17.5*10^6 Nmm$ ( Sagging )
Component | Area (a) | C.G.distance | ay | a$y^2$ | $I_{self}$ |
---|---|---|---|---|---|
$mm^{2}$ | from 1- 1, y(mm) | $mm^{3}$ | $mm^{4}$ | $mm^{4}$ | |
Top rectangle | 200 x 30 = 6000 | ($\frac{30}{2}$) = 15 | 90 x $10^3$ | 1.35 x $10^6$ | $\frac{{200 * {30}^3}}{12}$ = 450 * $10^3$ |
Bottom rectangle | 10 x 200 = 2000 | 30 + ($\frac{200}{2}$) = 130 | 260 x $10^3$ | 33.8 x $10^6$ | $\frac{{10 * {200}^3}}{12}$ = 6666.67 * $10^3$ |
Total | A = 8000 | - | 350 x $10^3$ | 35.15 x $10^6$ | 7116.67 x $10^3$ |
$\bar y_t=\frac{\sum ay}{A}=\frac{350*10^3}{800}=43.75mm$
Moment of inertia of section about axis (1)-(1)
$I_{1-1}=\sum I_{self}+\sum_{ay^2}$
=$7116.67*10^3+35.15*10^6=42.267*10^6 mm^4$
$I_{x-x}=I_{1-1}-A y_{-2}=42.267*10^6-8000*43.75^2$
$I_{x-x}=26.95*10^6 mm^4$
Let, $F_c and F_t$ be the maximum compressive and tensile stress due to bending.
$(\frac{M}{I}=\frac{f}{y}$
$f=\frac{M}{I}*y$
Maximum tensile stress=$\frac{17.5*10^6}{26.95*10^6}*43.75=28.40 N/mm^2$
Maximum compressive stress=$\frac{17.5*10^6}{26.95*10^6}*(230-\bar y_t)$
$\frac{17.5*10^6}{26.95*10^6}*(230-43.75)$
$=120.94N/mm^2$
written 6.1 years ago by |
Note :
If Maximum bending moment is sagging then part of the section above the neutral axis i.e x-x will be in compression and below the neutral axis it will be in tension.
If Maximum bending moment is hogging then part of the section above the neutral axis i.e x-x will be in tension and below the neutral axis it will be in compression.