written 6.0 years ago by
teamques10
★ 68k
|
•
modified 6.0 years ago
|
1. The 100mm wide timver strip is replaced by an equivalent
$=\frac{E_t}{E_s}*100=\frac{1}{20}*100=50mm$
($E_s=20E_t i.e \frac{E_s}{E_t}=20$ given)
Properties of the equivalent steel section.
Component |
Area (a) |
C.G.distance |
ay |
a$y^2$ |
$I_{self}$ |
|
$mm^{2}$ |
from 1- 1, y(mm) |
$mm^{3}$ |
$mm^{4}$ |
$mm^{4}$ |
Top rectangle |
100 x 10 = $10^3$ |
($\frac{10}{2}$) = 5 |
5 x $10^3$ |
25 x $10^3$ |
$\frac{{1000 * {10}^3}}{12}$ = 8333.33 |
Bottom rectangle |
200 x 50 = $10^4$ |
10 + ($\frac{200}{2}$) = 110 |
1100 x $10^3$ |
121000 x $10^3$ |
$\frac{{50 * {200}^3}}{12}$ = 33333.3333 * $10^3$ |
Total |
A = 11 x $10^3$ |
- |
1105 x $10^3$ |
121025 x $10^3$ |
33341666.63 |
Now, $\bar y_t=\frac{\sum ay}{a}=\frac{1105*10^3}{11*10^3}=100.45mm$ ( from (1) - (1) )
2. Moment of inertia of section about axis (1)-(1)
$I_{1-1}=\sum I_{self}+\sum_{ay^2}$
=$33341666.63+121025*10^3$
$I_{1-1}=154.366*10^6 mm^4$
$I_{x-x}=I_{1-1}-A y_{-2}=154.366*10^6-11*10^3*(100.45)^2=43.374*10^6 mm^4$
3. Since, the beam is fixed at one end and free at another end and carries a UDL of 8KN/m over the length of 2m
Now, bending moment M at A is $=8*2*)\frac{2}{2})=16KNm=16*10^6$
4. a) Maximum bending stress in steel$=\frac{16*10^6}{43.37*10^6}*100.45=37.054N/mm^2$
$(\frac{M}{I}=\frac{f}{y} i.e f=\frac{M}{I}*y)$
b) Maximum bending stress in timber$=\frac{10*10^6}{43.374*10^6}*-(100.45-10)*\frac{1}{20} $
$(f=\frac{M}{I}*y*y*m) where m=\frac{E_b}{E_s}$
c) Maximum bending stress in timber=
$=\frac{10*10^6}{43.374*10^6}*109.55*\frac{1}{20}=2.02N/mm^2 (tensile)$
i.e maximum bending stress in timber is $2.02 N/mm^2$ which is tensile