0
1.0kviews
1 cm diameter jets of clawn sprinkler force opposite directions. Flow of 3 litres/sec enters rotating arm in normal direction. Jets are equidistant from centre. The centre to centre distance between

the jets is 4cm. Find the speed of rotation and the torque required to hold the sprinkler stationary

1 Answer
0
4views

enter image description here

Diameter of jet d=1cm =0.01 m

Q=3l/s=$\frac{3}{1000}m^{3}/s=0.003m^{3}/s$

l=64cm =0.64 m

$r_{1}=r_{2}\frac{l}{2}=\frac{0.64}{2}$=0.32m

Area of jet

A=$\frac{\pi}{4}\times d^{2}=\frac{\pi}{4}\times(0.01)^{2}$

=$0.7854\times 10^{-4}m^{2}$

Quantity of discharge from each nozzle

$Q_{1}=\frac{Q}{2}=\frac{0.003}{2}=0.0015m^{3}/s$

Velocity of jet,

V=$V_{A}=V_{B}=\frac{Q_{1}}{A}=\frac{0.0015}{0.7854\times 10^{-4}}$=19.1m/s

Absolute Velocity if water leaving the jets

$V_{1}=V_{A}-w.r_{2} \ \ \ \ \ V_{2}=V_{a}-w.r_{2}$

$V_{1}=19.1-w\times 0.82 \ \ \ \ \ \ V_{2}=19.1-w\times 0.32$

  1. Speed of rotation, w

T=$PQV_{1}r_{1}+(PQV_{2}r_{2})$

o=$PQ(V_{1}r_{1}+V_{2}r_{2})$

o=$V_{1}r_{1}+V_{2}r_{2}$

=$(19.1-0.32w)0.32+(19.1-0.32w)\times 0.32$=0

w=59.69 rad/s

2.Torque required to hold the sprinkler T

$T=PQ_{1}V_{A}r_{1}+PQ_{1}V_{B}r_{2}$

=$PQ(V_{A}+V_{B})r$

=$1000\times 0.0015(19.1+19.1)$0.32

=18.336 kN m

Please log in to add an answer.