written 6.2 years ago by | • modified 5.1 years ago |
Determine the required to hold the sprinkler stationary if the friction neglected determine the speed of sprinkler
written 6.2 years ago by | • modified 5.1 years ago |
Determine the required to hold the sprinkler stationary if the friction neglected determine the speed of sprinkler
written 6.2 years ago by | • modified 6.2 years ago |
Diameter of nozzles d=12mm =0.012m
Velocity of flow at each nozzle,
V-$V_{A}=V_{B}$=9m/s, $r_{1}=20cm$=0.2m
$r_{2}=25cm =0.25m$
Area of each nozzle, A=$\frac{\pi}{4}d^{2}=\frac{\pi}{4}\times (0.012)^{2}$
=$1.131\times10^{-4}m^{2}$
Discharger through the sprinkler
Q=V A$9\times 1.131\times 10^{-4}=10.179\times 10^{-4}m^{3}/s$
1) Torque required to hold the arm
-Torque exerted by the water flowing through nozzle A on the sprinkle
-$PQV_{A}R_{1}=100\times (10.179\times 10^{-4})\times 9\times 0.25$=2.2903 Nm
-Total torque exerted by water on sprinkler,
=2.2903+1.8322=4.1225 Nm
2) Speed of Roatation os sprinkler arm if free to rotate
Let w=Speed of rotation of sprinkler arm
Absolute Velocity of water at nozzle A,
$V_{1}=V_{A}-wr=9-2\times 0.20$
Absolute Velocity of water at nozzle B,
$V_{2}=V_{B}-wr_{2}=9-w\times 0.25$
Torque exerted by water coming out of A on Sprinkler
$PQV_{i}r_{1}$
=1000$\times (10.179\times 10^{-4})(9.w\times 0.2)0.2$
=6.203.(9.02w)
Torque exerted by water coming out of A on sprinkler
$PQV_{2}r_{2}$
=1000$\times (10.179\times 10^{-4})(9.025 w)0.25$
=0.2545(9-0.25w)
Total Torque exerted by water
=0.2036(9-0.2w)+0.2545(9-0.25w)
0.2036(9-0.2w)+0.2545(9-0.25w)=0
$0.2036\times 9-0.2036\times0.2w+0.2545\times 9-0.2545\times0.25w$
4.1229=0.104345 w
w=39.5912 rad/s