written 6.0 years ago by
teamques10
★ 68k
|
•
modified 6.0 years ago
|
Case 1: When the column carries a load of 270KN
Area of steel $As=\frac{\pi}{4}*16^2*8=1608.48mm^2$
Area of concrete=$A_c=250*250-1608.48=60891.52 mm^2$
Let the stress in steel and concrete be $P_s$ and $P_c$
Strain in steel=strain in concrete
$\frac{P_s}{E_s}=\frac{P_c}{E_c}$
$P_s=\frac{E_s}{E_c}*P_c$
i.e $P_s=18P_c$ ( since, $E_s = 18 E_c$ ) --- (1)
Now, load on steel+load on concrete=load on column
$P_sA_s+P_cA_c=P$
( since, Load = Stress * Area )
$18P_c*1608.5+P_c*60891.52 = 270000N$ (from - (1))
$P_c=3 N/mm^2$ ---------------------------- (2)
$P_s=18*3=54 N/mm^2$ --------------from (1) & (2)
Case 2: When the column carries a load of 400KN
Let the area of steel be as $mm^2$
Area of concrete=$A_c=250*250-A_s mm^2$
$A_c=62500-A_s mm^2$
Stress in concrete $P_c= 4 N/mm^2$
Stress in steel $P_s=18*P-c=18*4=72 N/mm^2$ ------ (from 1)
Load on steel+load on concrete=load on column
$P_sA_s+P_cA_c=P$
$72*A_s+4(62500-A_s)=400000N$
$A_s=2205.9 mm^2$