Given data:
Tensile load(F)=55KN
Diameter(d)=31mm
Gauge Length (L)=300mm
Extension $(\Delta L)=0.115mm$
$\Delta d $Change in diameter=0.00567 mm
i) Poisson's ratio $\mu =\frac{lateral strain}{longitudinal strain}$
$\mu= \frac{\frac{0.00367}{31}}{\frac{0.115}{300}}$
$\mu=0.308$
2) Young's modulus=$\frac{stress}{strain}$
$E=\frac{55*10^3/\pi /4*31^2}{0.115/300}$
$E=190.09*10^3 N/mm^2$
3)$ E=3K(1-2\mu)$
$190.09*10^3=3K(1-2*0.308)$
$Bulk modulus(K)=165*10^3 N/mm^2$
4)$ E=2G(1+\mu)$
$190.09*10^3=2*G(1+0.308)$
Modulus of rigidity $G=72.664*10^3 N/mm^2$