Given data:
diameter d=30mm
Length L=3mm=3000mm
Force F=100KN
Modulus of elasticity (E)=70GN/m2=70∗103N/mm2
Poisson's ratio μ=13
Now, σstress=forceoraxialpullareaofcrosssection=
100∗103π302N/mm2
Stress=141.47N/mm2
Now, modulus of elasticity=stress(σ)strain(ϵ)
70∗103=141.47ϵ
ϵ=2.021∗10−3
ϵ=changeinlengthoriginallength
2.021∗10−3=Δ3000
ΔL=6.063
Now, Poisson's ratio σ=lateralstrainlongitudinalstrain
13=δddΔL=
δd306.0633000
Δd=0.02021mm
Now,E=3K(1−2μ)orE=2G(1+μ)
Using first equation as bulk modulus is asked, not modulus of rigidity
70∗103=3K(1−213
70∗103=3K(3−23
K=70∗103N/mm2or70KN/mm2
Now, bulkmodulus=stressvolumetricstrain
70∗103=141.47ϵv
ϵv=2.021∗10−3
ϵv=changeinvolumeoriginalvolume
2.021∗10−3=Δvπ4∗d2∗L
2.021∗10−3=Δvπ4∗302∗3000
Changeinvolume(ΔV)=4285.68mm3