Given data:
diameter d=30mm
Length L=3mm=3000mm
Force F=100KN
Modulus of elasticity $(E)=70GN/m^2=70*10^3 N/mm^2$
Poisson's ratio $\mu=\frac{1}{3}$
Now, $\sigma stress=\frac{force or axial pull}{area of cross section}=$
$\frac{100*10^3}{\frac{\pi}{30^2}} N/mm^2$
Stress=$141.47 N/mm^2$
Now, modulus of elasticity=$\frac{stress (\sigma)}{strain (\epsilon)}$
$70*10^3=\frac{141.47}{\epsilon}$
$\epsilon=2.021*10^{-3}$
$\epsilon=\frac{change in length}{original length}$
$2.021*10^{-3}=\frac{\Delta}{3000}$
$\Delta L=6.063$
Now, Poisson's ratio $\sigma= \frac{lateral strain}{longitudinal strain}$
$\frac{1}{3}=\frac{\frac{\delta d}{d}}{\frac{\Delta}{L}}=$
$\frac{\frac{\delta d}{30}}{\frac{6.063}{3000}}$
$\Delta d=0.02021 mm$
$Now, E=3K(1-2 \mu) or E=2G(1+\mu)$
Using first equation as bulk modulus is asked, not modulus of rigidity
$70*10^3=3K(1-2\frac{1}{3}$
$70*10^3=3K(\frac{3-2}{3}$
$K=70*10^3 N/mm^2 or 70 KN/mm^2 $
Now, $bulk modulus=\frac{stress}{volumetric strain}$
$70*10^3=\frac{141.47}{\epsilon_v}$
$\epsilon_v=2.021*10^{-3}$
$\epsilon_v=\frac{change in volume}{original volume}$
$2.021*10^{-3}=\frac{\Delta v}{\frac{\pi}{4}*d^2*L}$
$2.021*10^{-3}=\frac{\Delta v}{\frac{\pi}{4}*30^2*3000}$
$Change in volume (\Delta V)=4285.68 mm^3$