The stresses in the direction of X, Y and Z axes,
Along X-axes, $P_x=\frac{F_x}{A}=\frac{320*10^3}{60*60}(N/mm*mm)=88.89 N/mm^2$
Along Y axis, $P_y=\frac{F_y}{A}=\frac{760*10^3}{180*60}(N/mm*mm)=70.37 N/mm^2$
Along Z axis, $P_z=\frac{F_z}{A}=\frac{600*10^3}{180*60}(N/mm*mm)=55.56 N/mm^2$
Now, the strain along the three principal directions are, due to stresses, $P_x, P_y, P_z,$
$e_x=\frac{P_x}{E}-\frac{\mu P_Y}{E}-\frac{\mu P_z}{E}$
$e_x=\frac{88.89}{200*10^3}-\frac{0.3*70.37}{200*10^3}-$
$\frac{0.3*55.56}{200*10^3}=0.000256$
Now,
$e_y=\frac{P_y}{E}-\frac{\mu P_z}{E}-\frac{\mu P_x}{E}$
$e_y=\frac{70.37}{200*10^3}-\frac{0.3*55.56}{200*10^3}-$
$\frac{0.3*88.89}{200*10^3}=0.000135$
$e_z=\frac{P_z}{E}-\frac{\mu P_x}{E}-\frac{\mu P_y}{E}$
$e_z=\frac{55.56}{200*10^3}-\frac{0.3*88.89}{200*10^3}-$
$\frac{0.3*70.37}{200*10^3}=0.00039$
Volumetric sign$=e_x+e_y+e_z$
$=0.000256+0.000135+0.00039$
$e_v=0.000781$
Also, $volumetric strain=\frac{change in volume}{original volume}$
$0.000781=\frac{change in volume}{180*60*60}$
$Change in volume=506.088mm^3$
$Now, e_x=\frac{Delta L}{L}$
$0.000256=\frac{\Delta}{180}$
$\Delta L=0.046mm$
$e_y=\frac{Delta W}{W}$
$0.000135=\frac{\Delta W}{60}$
$\Delta W=0.0081mm$
$e_z=\frac{Delta t}{t}$
$0.00039=\frac{\Delta t}{60}$
$\Delta t=0.0234mm$