Change in length $(\delta l)=\frac{P*L}{AE}$
Given, $P=130*10^3 N, L=4200mm$
$W=35mm, t=25mm$
$E=200GPa, E=200*10^3 N/mm^2$
$\mu=0.3$
$\delta L=\frac{130*10^3*4200}{35*25*4200)10^3}$
$\delta L=1.48mm$
$Poisson's Ratio=\frac{Lateral strain}{Longitudinal strain}$
Calculations of changes in width : -
$Lateral strain=\frac{\delta w}{w} or \frac{\delta t}{t}$
$Longitudinal strain=\frac{\delta L}{L}$
$\mu=\frac{\frac{\delta w}{w}}{\frac{\delta L}{L}}$
$0.3=\frac{\frac{\delta w}{35}}{\frac{2}{4200}}$
$\delta W=0.022mm$
Calculation of change in thickness:
$\mu=\frac{\frac{\delta t}{t}}{\frac{\delta L}{L}}$
$0.3=\frac{\frac{\delta t}{25}}{\frac{2}{4200}}$
$\delta t=0.015mm$