0
3.7kviews
A bar of varying section fixed at both ends is axially loaded as shown in fig. by the forces. Find the reaction at A and D and also the elongation in the bar AB and CD respectively.
1 Answer
0
182views
written 6.0 years ago by | • modified 6.0 years ago |
For equilibrium,
$\sum F_x=0$
$R_A+R_D=100+200=300$ (1)
For rigid support/fixed end at both sides, then total elongation is zero.
$\delta l= (\delta l)_{AB}+(\delta l)_{BC}+(\delta l)_{CD}=0$
$\frac{R_A*1000}{2000*200*10^3}-\frac{100-R_A*1500}{3000*200*10^3}-\frac{R_D*2000}{4000*200*10^3}=0$
(+ve for tensile force, -ve for compressive forces)
$5R_A-5(100-R_A)-5R_D=0$
$5R_A-500-5R_A-5R_D=0$
$10R_A-5R_D=500$ (2)
On solving, (1) and (2), we get
$R_A=133.33KN$ $R_D=166.67KN$
$F_{BC}=33.33KN (T)$
$F_{BC}=100-R_A=100-133.33$
$F_{BC}=-33.33 KN$ (compressive)
$F_{BC}=33.33 KN$ (T)
$F_{CD}=R_D=166.67KN (C)$
Now, $(\delta l)_{AB}=\frac{133.33*1000}{2000*200*10^3}=0.333mm$
$(\delta l)_{CD}=\frac{166.67*2000}{4000*200*10^3}=0.417mm$
ADD COMMENT
EDIT
Please log in to add an answer.