written 6.1 years ago by | • modified 2.8 years ago |
Subject: Structure Analysis 2
Topic: Determination of Collaps Load for Beams
Difficulty: Hard
written 6.1 years ago by | • modified 2.8 years ago |
Subject: Structure Analysis 2
Topic: Determination of Collaps Load for Beams
Difficulty: Hard
written 6.1 years ago by |
No of plastic hinge (P.H)= N = 6.
1) Let beam AB collapse:
Using virtual work principle:
EWD = IWD
$40*\gamma = M_P\theta+ M_P2\theta + M_P\theta$
$\theta=\frac{\gamma}{2} \gamma=2\theta$
$40.2\theta = 4 M_P\theta$
$M_P = 20 KN.m$
2) Let Span BC collapse:
Using virtual work principle:
EWD = IWD
$20*(\gamma) = M_P\theta + M_P2(\theta + \alpha) + M_P\alpha$
$\theta = \frac{\gamma}{1} \gamma = \theta$
$\theta = 3\alpha \alpha =\frac{\theta}{3}$
$20.\theta=M_P\theta + M_P(\theta + \frac{\theta}{3}) + M_P(\frac{\theta}{3})$
$M_P = \frac{20}{2.67}$
$M_P =7.49 KN.m$
3) Let Span CD collapse:
Using Virtual work principle, Standard Case.
$M_P = \frac{WL^2}{11.656}$
$M_P = \frac{120*6^2}{11.656}$
$M_P = 370.62 KN.m$
Failure occurs in Span where $M_P$ is highest i.e.Span CD
$M_P = 370.62KN.m$