written 6.1 years ago by | • modified 2.8 years ago |
Subject: Structure Analysis 2
Topic: Determination of Collaps Load for Beams
Difficulty: Hard
written 6.1 years ago by | • modified 2.8 years ago |
Subject: Structure Analysis 2
Topic: Determination of Collaps Load for Beams
Difficulty: Hard
written 6.1 years ago by |
No of plastic hinge = N = 6.
1) Let beam AB collapse:
Using virtual work principle:
EWD = IWD
$30*\gamma = M_PO+ M_P(O + \alpha) + M_P\alpha$
$30*2O = M_PO + M_P(O + \frac{O}{2}) + M_P(\frac{O}{2})$
$60O = M_PO(1+1+\frac{1}{2} + \frac{1}{2})$
$M_P = 20 KN.m$
2) Let Span BC collapse:
Using virtual work principle:
EWD = IWD
$20*(\frac{1}{2}*3*\gamma) = M_PO + M_P2O + M_PO$
$20*(0.5*3*\gamma) = 4M_PO$
$O=\frac{\gamma}{1.5}$
$\gamma = 1.5O$
$20*(0.5*3*1.5O) = 4M_PO$
$M_P = \frac{45}{4} = 11.25$
$M_P = 11.25 KN.m$
3) Let Span CD collapse:
Using Virtual work principle.
$M_P = \frac{WL^2}{11.656}$
$M_P = \frac{10*4^2}{11.656}$
$M_P = 13.72 KN.m$
Failure occurs in Span where $M_P$ is highest i.e.Span AB
$M_P = 20 KN.m$